Mechanical properties of carbon nanotube webs

ANAM initiative

J. C. Stallard, W. Tan, N. A. Fleck, A. M. Boies, F. R. Smail.

ANAM Initiative
Advanced Nanotube Application and Manufacturing

The ANAM Initiative.

Broad collaboration between **Cambridge Engineering** and **Materials Science** Departments, and **Ulster University**, and several **industrial partners**.

Focus on direct-spun CNT materials, made by the *Windle Process*

Carbon Nanotubes: Intrinsic Properties

Individual Tubes: MWNT wall structural properties

E = **1 TPa** σ_f > **100 GPa** ρ ~ **2200 kg/cm**³

Wang et al, (2010)

Good **understanding** of mechanics with **strong theoretical validation**

Yu *et al* (2000) Wang *et al* (2010) Zhang *et al* (2014)

(Poncharal *et al,* 1999) Determination of modulus by electrostatic vibrations

(Falvo *et al,* 1997) Large elastic c deformation

3

Electrical Conductivity: 2 x 10⁵ s/cm Thermal Conductivity: 3500 W/mK

- Can we realise the properties of CNTs in Direct-spun Mats and other Bulk CNT Materials?
- If not, why?

Advanced Nanotube Application and Manufacturing

Carbon Nanotubes: Intrinsic Properties

ANAM Initiative
Advanced Nanotube Application and Manufacturing

Bulk CNT Materials: methods of manufacture

The Properties of Bulk CNT Materials: Mechanical

The Properties of Bulk CNT Materials: Electrical & Thermal

The Properties of a **Direct-spun CNT Mat: Uniaxial Response**, **composition**, and **electrical properties**

Direct-spun CNT Mat: In-Plane Piezoresistivity, and Unloading

瘀瘀

In-Situ Tensile Testing

500 µm

5 µm

Microstructural change during the uniaxial response

3µm

Advanced Nanotube Application and Manufacturing

University of

Micromechanical Model for direct-spun mat

CAMBRIDGE

14

Advanced Nanotube Application and Manufacturing

Micromechanical Model for direct-spun mat

Macroscopic yield dictated by the shear strength of CNT bundles.

UNIVERSITY OF

15

CAMBRIDGE

0.2

ANAM Initiative

Advanced Nanotube Application and Manufacturing

Routes for Improvement...

Therefore, improvement in mechanical properties can come from ALIGNMENT of CNT BUNDLE MICROSTRUCTURE

Response in Fluids

- Chlorosulfonic acid lowers σ and E by over an order of magnitude.
- ε increases to ~1.4 at same rate.

17

Response in Fluids

To Load Cell

Pulley

Free

Mass

FPSRC

ingineering and Physical

Electrical resistance also affected by fluid immersion... but mechanical behaviour is time invariant.

UNIVERSITY OF

🚺 CAMBRIDGE

18

University of

Debundling/debonding upon CSA Immersion

Debundling/debonding upon CSA Immersion

The presence of **adsorbed ions** at the CNT wall, and in the **solution** screen the positive charge upon the CNT walls, and overcome the **van-der-Waals** attraction.

Fluid Processing in superacid solutions

Ductility and drawing stress controlled by the concentration of a superacid solution.

Drawing process to enhance alignment

Properties of drawn fibres

- All properties improved significantly.
- Change in ultimate specific strength and conductivity a factor of 3.
- Larger change in stiffness due to switch away from bending.

UNIVERSITY OF

🚺 CAMBRIDGE

22

University of

ngineering and Physica

1 µm

Summary

- The **properties** of direct-spun carbon nanotube materials (and CNT materials in general) vary across a **wide range of density**.
- The stiffness and strength of direct-spun mats is reduced by the CNT bundle network of low nodal connectivity, and by the rope-like structure of the CNT bundles.
- Mechanical and electrical properties of direct-spun CNT mats are enhanced by tensile drawing in different fluids, particularly in superacids.

ANAM Initiative
Advanced Nanotube Application and Manufacturing

