STRUCTURAL HEALTH MONITORING OF LANDMARK CIVIL INFRASTRUCTURE IN THE UK

Professor James MW Brownjohn
PhD, DEng, FIMechE, MIstructE, ISHMII Fellow
Ki-Young Koo, PhD

Vibration Engineering Section
Department of Civil and Structural Engineering
University of Sheffield
OUTLINE

About VES/FSDL
Structural health/performance monitoring in other industries
Purposes and definitions
JMWB UK examples:
  Humber Bridge,
  Tamar Bridge –example 1,
  Rugeley Chimney –example 2,
  Sheffield University Arts tower
Conclusions
VES/FSDL deals with actual or potential operational performance issues with structures like these:

- Rugeley Chimney
- Marina Bay Sands, Resort, Singapore
- Millennium Bridge
- City of Manchester Stadium
- Republic Plaza, Singapore
- Micro-drive plant, Singapore
SHM in other industries:
Health/performance monitoring with real-time alerting and condition-based maintenance are the norm for cars.
... whose prototypes are extensively tested before entering service,

ULS (collapse)  SLS (serviceability)
...as are aircraft which undergo thorough ground vibration test before entering service to evaluate fitness for purpose.
Each civil structure is a prototype, incorporating large safety factors. We can only study the structure in operational condition to establish performance profile.
WHY DO WE NEED SHM FOR CIVIL STRUCTURES?

Track structural loads/overloads/extreme responses
Provide warning of impending failure (who dares to declare successes?)
Check novel systems of construction/structural forms
Validate structural modifications
Assess structural safety/performance after trauma (e.g. earthquake/impact)
Provide a feedback loop to design and loading codes
Evaluate ’servicability’ – e.g. User comfort/safety
Track long term movement or degradation to aid maintenance decisions
’Damage’ detection? Not for structures in the real world, in my experience
Elements of civil infrastructure SHM system

Automated continuous/long term monitoring
- Sensors (static/dynamic)
- Local data storage
- Local processing
- Data transmission
- System identification
- Data reduction/mining
- Performance/load evaluation

→ **Data-driven model**

Using data-driven/physics-based model:
- Anomaly detection
- Reporting/alerting/decisions

One-off/offline assessment
- (FE) modeling
- (Dynamic) testing
- Model validation/updating

→ **Physics –based/FE model**

Stonecutters Bridge, Hong Kong
Example 1: Tamar Bridge: opened 1961, upgraded 2000, static monitoring system installed by Fugro to check effects of upgrade
SHM configuration with three sub-systems:

- Fugro system* (2000, upgraded 2007),
- Sheffield dynamic system (2006),
- Sheffield TPS system (2009)

(Data fusion managed via MATLAB/MySQL database)

*Installed to evaluate effect of upgrade
Results of 2000 strengthening and widening (upgrade):

1) Deck bearing system rearranged w.r.t. longitudinal restraint
2) Cantilevers added (retaining continuity at Plymouth)
3) Additional stays (φ~100mm) added to carry extra load

Cable vibrations controlled by ‘interesting’ design of damper
 Loads are wind, temperature and traffic; These have complex effect on ‘normal performance’, to be filtered out to reveal abnormal performance

Wind speeds at Tamar Bridge

Deck and main cable temperatures

Temperature: major effect
Wind: secondary effect
Traffic: minor effect
Temperature loads, drive global deformations

We expected strong temperature influence so we looked for effects of thermal expansion on bearing movement and cable tensions.

Saltash tower expansion joint

(March 2007 data)
Relationship of stay cable tensions & deck temperature:
This is hysteretic, nonlinear and seasonal, not as simple to interpret as first seems.
Deck level and stay cable tension are linked (and of course strongly correlated with temperature)

Note the lopsided pattern

S2, S4, P2, P4

H62 = midspan
H89 = 1/4 span @ Plymouth
Deck mode frequencies have large ranges with obvious diurnal variations but not obvious correlations with loads:

Deck vibration modes identified by full scale ambient vibration survey, April 2006

VS1 0.393Hz  LS1 0.457Hz  VA1 0.595Hz
Wind and effects on dynamic displacements for band 0.1Hz-1.0Hz, only noticeable for strongest winds
Mechanisms not clear, due to incomplete picture of deck movement. So we explore with Total Positioning System.
Definition of Local Coordinates for (Leica) TPS

Origin O=(0,0,0)
Reflector Locations along south side of deck and on towers
Remote desktop access to laptop running GeoMoS

Vertical

Longitudinal (E)

Lateral (S)
Measured east/vertical displacement behavior (no clear pattern in other planes so far)
So this is how the continuous section of deck (from Plymouth abutment to Saltash tower) moves
Result of SHM study so far for Tamar Bridge

• Temperature is the dominant driver of structural configuration
• Majority of dynamic loads derive from traffic (heavy vehicles)
• Wind effects on configuration and dynamic response are minimal
• Structural configuration variation leads to major effects on dynamic properties making their use as sole measure for SHM a major challenge
• We believe boundary conditions (bearings) are primary influence on bridge global dynamic performance (i.e. mode frequencies)
• Stay cable vibrations are well controlled by damper system
• Establishing a performance ‘baseline’ is critical but complex aspect of SHM: we need to know what’s OK before we can see what’s wrong
• Ongoing study with validated model not reported here
Example 2: Rugeley chimney

- Reinforced concrete flue gas chimney at Rugeley coal-fired power station (Staffordshire, U.K.)
- Built in 1968
- 183m high
2006: construction of new chimney for flue-gas desulphurisation (FGD) system.
183 m high reinforced concrete chimney (same height as old one).
Approx. 100m in SSW direction from old chimney.
• Problem of wind-structure interaction identified during construction of new chimney.
• Enhanced vortex shedding from new chimney caused excessive vibration of old chimney (in SSW winds).
• Structural capacity can be exceeded for 1% damping!
• Consultant recommended response monitoring
Live performance monitoring:
4-channel monitoring system online from March 2007
-designed to give alarm for high response and provide response data

High alert level

Panasonic Toughbook+
NI USB-6251 or NI USB-9239
NO existing access for accelerometer installation: Hence QA750s installed by experts ....

40m box is cherry-picker accessible backup
followed quickly by installation of tuned mass damper (TMD, by Multitech), from March 2007
Tuned mass damper:
42 tonne mass
(~3% mass ratio)
180kNs/m damping
450mm travel

Concrete-filled metal ring
Damper element (x5)
Real time frequency and damping estimation shows max performance of TMD around 4% (29 February 2008)
Crosswind response shows clear evidence of enhanced vortex shedding.

SSW, 39 mph (17.4 m/sec) North

Wind not aligned with new chimney

WNW, 22 mph (9.8 m/sec)

Downwind of new chimney
This is bizarre: modal parameter variation over time

Zoom on frequency shift (March 2008):
Changes in frequency & damping distribution:

Mode of damping distribution has increased, extreme values reduced

Mode pairing blurred
The mechanism is a mystery but constructions joints are believed to play a part. The mode shape is also changed: \( \phi_{40m} = 0.07 \rightarrow 0.06 \)
Chimney has now been demolished
Result of SHM study on Rugeley Chimney

- This is a very rare example where pure vibration-based monitoring and frequency changes have had direct value for structural assessment.
- Safe-range performance of the chimney was proven at all times during tandem operation.
- TMD effectiveness was demonstrated in real time.
- Bizarre form ‘structural mechanism’ observed due to gross temperature changes.
- Damping, frequency and response level evaluation are critical for super-tall buildings (e.g. Burj Kahlifa).
- Real-time evaluation is crucial for effective SHM; results are needed soon enough to make informed decision on operation and intervention.
Other structures -in UK- include:

City of Manchester stadium
(vibration monitoring for serviceability assessment during rock concerts)

Sheffield University Arts Tower
(vibration monitoring for serviceability during retrofit)

Humber Bridge
(static and dynamic response monitoring to study aero-elastic & thermal effects)
Acknowledgements:

• EPSRC (support for Tamar Bridge SHM project)

• Keith Worden, Elizabeth Cross, collaborators in EPSRC project

• Bierrum (allowing publication of Rugeley Chimney study)

• Peter Carden, Rob Westgate and others for crucial help in both projects

• David List and Richard Cole of Tamar Bridge and Torpoint Ferry Committee

• Antolin Lorenzana for Chimney response simulation
A final thought: The snake-oil* effect in civil SHM
*quack medicine

By courtesy of Dr Franklin Moon,
Drexel University, Philadelphia, PA