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Abstract. We have developed a method to address problems associated with the use of nanoindentation near 
the edge of a small object with a rough surface that can be applied to viscoelastic materials. To compare the 
performance of this method with the existing method that implicitly assumes the mean contact stress remains 
constant with penetration depth, both methods were applied to the dynamic indentation data of an acrylic-
based paint thin film embedded in a resin of dissimilar mechanical properties. The existing method was shown 
to significantly overestimate the reduced elastic modulus of the material near the edge, whereas the present 
method correctly predicted the largely flat modulus profile across the film thickness. The method developed in 
this work enables detailed mechanical characterization of small and soft objects with inherently rough surfaces, 
frequently encountered in a wide variety of research fields including heritage conservation. 
 

Introduction 

The development of effective preservation methods for a work of art typically requires detailed mechanical 
and chemical analyses of its constituent materials performed in a minimally invasive manner. This obvious 
restriction imposes a strict limit on the volumes of original materials available for analysis, thereby ruling out 
conventional tensile and compression testing as viable options. Nanoindentation offers the possibility for direct 
mechanical characterization of a small volume of historic material, due to its ability to control the indent size at 
a nanometer resolution. In the case of a sample with a rough surface, however, the depth of indentation must 
increase to ~20 times the roughness depth to negate the surface roughness effect. Further, a deep indentation 
of a small sample would result in probing the combined response of the sample and its surrounding embedding 
material, rather than the intrinsic response of the sample itself. This work develops a method to extract the 
intrinsic mechanical properties of an embedded finite-volume sample with a rough surface from the indentation 
response. 
 

Existing method 

Where the frame compliance of the instrument is appropriately accounted for, the measured indenter 
displacement, h, at a given location on the sample surface consists of the local deformation of the sample due 
to indentation and the global deflection of the composite structure comprising its surrounding embedding 
material. It was shown that the effect of the latter can be modeled as the applied load, P, multiplied by a 
constant known as the structural compliance, Cs. Hence, the depth of penetration of the indenter into the 
sample, h*, is conveniently given as [1,2] 

h* = h – CsP.                                                                                                                                 (1) 

If the elastic stiffness, S, is measured dynamically, the elastic stiffness due to indentation, S*, is given by 

1/S* = 1/S – Cs.                                                                                                                             (2) 

Using Eqs. 1 and 2, the depth of the indenter in contact with the sample, hc
*, is given as [2] 

hc
* = h – 0.75P/S – 0.25CsP.                                                                                                        (3) 

Therefore, if the value of Cs at a given test location is known, one can determine the compliance-corrected 
penetration depth, elastic stiffness, and contact depth thereof using Eqs. 1-3. There exists a method to 
determine Cs experimentally using the following correlation [1-3] derived from the Joslin-Oliver relation [4]: 

√P/S = Cs√P + √(/42)√H/Er,                                                                                                       (4) 

where H is the mean contact pressure exerted by the indenter, Er is the reduced elastic modulus of the sample 

with the indenter, and  is a geometric constant of the indenter that equals 1.034 for a Berkovich tip. The actual 
procedure involves plotting the experimental √P/S versus √P and determining Cs as the slope of the scatter 
plot, assuming that √H/Er remains constant with penetration depth. 
 

Novel method 

While the assumption of constant Er with penetration depth is reasonable for a viscoelastic material tested 
dynamically at a given frequency, the assumption of constant H with depth may become questionable when 
the indentation is performed in close proximity to the edge. In such a case, the material beneath the indenter 
is progressively over-constrained (or under-constrained) at increasing penetration depth by its surrounding 



 

stiffer (or more compliant) embedding material. With this in mind, we propose a novel method of determining 
Cs that adapts the fundamental theory of indentation with a sharp tip by relating Er to the ratio of elastic stiffness 
to contact depth [5]. Substitution of S* and hc

* to this theoretical relation yields 

h – h0 – 0.75P/S – 0.25CsP = S/(2  tan θ Er)/(1 – CsS),                                                                (5) 

where h0 is an effective contact point that defines the initial engagement of the indenter with a conceptual 
horizontal plane representing the base of a three-dimensional local surface height profile of the real sample, 
and θ is the effective cone semi-angle of the pyramidal indenter. This equation thus relates each of the three 
variables P, h and S to each other using three unknown constants h0, Cs and Er. The novel method determines 
the effective contact point, h0, by extrapolating h to P = 0 using a regression model that describes the 
experimental h versus √P. The method finds a combination of the remaining two constants, Cs and Er, that 
minimizes the sum of squares of the differences between the measured and model-predicted values of S using 
an iterative process implemented in Matlab® (MathWorks®). 
 

Experimental 

The material tested was a titanium white acrylic-based paint with pigment diameters of ~300 nm and a 

pigment volume concentration or PVC of 38 % (Golden Artist Colors, Inc.). A ~210-m thick paint film peeled 
from a Mylar® polyester sheet (on which it was casted) was embedded in a light-curing resin in paste form 
(Technovit® 2000 LC Fixierpaste, Kulzer GmbH) that exhibits a reduced modulus of ~15 GPa in fully cured 
condition. Through the use of an embedding paste rather than a liquid resin, the infiltration of this material into 
the paint sample was minimized. The embedded cross-section was dry-sanded by working through a sequence 
of grits from course to fine to realize a reasonably flat and smooth surface for indentation testing. A total of 34 
indentations were performed across the entire thickness of the cross-sectional paint sample in a quasi-

hexagonal array with a spacing of ~30 m. The narrowest distance between an indent and the sample edge 
was ~7 μm. Two other pieces from the same paint film were mounted onto a rigid and smooth substrate using 

the same embedding resin paste – one sample was mounted top side up, while the second was underside up, 
allowing for indentation testing on both sides of the free film. All tests were conducted with a diamond Berkovich 
tip using the continuous stiffness measurement capability of the Ultra Nanoindentation Tester (Anton Paar) at 
an excitation frequency of 20 Hz. The quasi-static component of the load was increased exponentially with 
time to keep the strain rate constant at ~0.05 s–1; hence, the mean contact stress remains constant at the 
beginning of the loading phase during which the edge effect is absent. The temperature in the test environment 
was ~20 °C while the relative humidity ranged from 41 to 50 %. 
 

Results 

The reduced elastic moduli of the top side and underside of the free film were determined from the mean 
slope of the elastic stiffness versus contact depth curve over the load range of 1.5 to 6 mN, with resulting 
values of 1.48 ± 0.07 GPa (n = 9) and 1.71 ± 0.05 GPa (n = 9), respectively. The indentation data for loads 
below 1.5 mN was excluded to negate a porous domain on the top side and a harder skin on the underside of 
the film, identified within a few microns below either surface. 

All indentation data of the cross-sectional sample (n = 34) were analyzed using the novel and existing 
analysis methods in the load range up to 2.1 mN except for the single test performed closest to the edge, for 
which the load range was limited to ~0.85 mN to exclude the latter portion of its data reflecting the contact of 
the indenter with the resin surface. The existing method predicted a modulus increase to ~2.5 GPa towards 
either edge of the film, contradicting the results obtained on either side of the free film. In contrast, the novel 
method revealed a flat modulus profile across the film thickness with a baseline value of 1.64 GPa ± 0.18 GPa, 
commensurate with the modulus range of the free film. More importantly, the cross-sectional modulus analyzed 
by the novel method was found to correlate strongly (R = 0.936) with the mean contact pressure extrapolated 
to zero load. This indicates that the observed modulus scatter across the cross-sectional film was not due to 
the limitation of the method, but rather the reflection of the actual local properties of the sample comprising 
hard metal particles sparsely distributed (PVC of 38 %) in a random manner within a soft polymer matrix. 
 

Conclusion 

A method to overcome the issue of nanoindentation near the edge of a small and soft object with a rough 
surface was developed. Application of the method was successfully demonstrated for an acrylic-based paint 
thin film embedded in a resin. The method enables detailed mechanical characterization of small objects with 
rough surfaces, frequently encountered in a wide variety of research fields including heritage conservation. 
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