

Materials Characterisation For Industrial Applications Using Digital Image Correlation Techniques

Dr David Townsend and Dr Simon Jenkins

Advanced Technology Centre

16.07.08/AWE/ISC

A lot of effort!

Content

- Introduction
- Test Facilities
- Examples of Materials Characterisation with DIC
- Summary Industrial Applications of DIC (in R&D)

The Experimental Impact Centre

Introduction

BAE System Impact Capability

- 20 years history in impact
- Comprehensive range of capabilities for the investigation of impact phenomena and dynamic material behaviour (problem solving, consultancy, fundamental research)
- Specialist dedicated laboratories and comprehensive diagnostic suite

Experimental Impact Testing

Impact tests m/s up to 4000m/s (with the capability of extending to 7000m/s)Engine and tyre debris, armour, high speed fragment,

Material Characterisation Under Dynamic Loading Conditions

Materials data at high strain rates (>1000 /s) - metals, FRC, plastics, joints and adhesives

- EOS and shock loading studies up to 2500m/s
- Non-linear material response
- Validation tests simple idealised geometry

The Experimental Impact Centre

Investment has been made in buildings, hardware and high performance instrumentation to study impact events. Indoor laboratory (completed November 2006) Single and two stage gas guns capable of up to 4000m/s (7000m/s with H₂) Tension and compression Hopkinson Bars, >1000/s Conventional test machines up to 1.5 m/s

High speed Imacon/U68 cameras Flash X-ray, 150 kV, 2 channel Fast transient recording equipment Photron APX RS High pressure gauges, >0.5 Mbar Fast response strain gauge equipment Accurate projectile velocity measurement Digital Image Correlation

3D Image Correlation

- Correlated Solutions Vic 3D System
- AVT 2Mpixel cameras (x2)
- Photron APX (x2) 512x512 @ 10,000 fps
- Test specimen painted with appropriate pattern
- Calibration
- Images analysed
- Used to complement strain gauge technique.

Microstrain (ue)

0

0

50

SUA04_01_T0 14000 12000 10000 8000 - Strain Big Circle 6000 Strain Small Circle 4000 Strain Virtual Extensometer - Strain Gauge 2000 Strain Extensometer

100

Time (s)

Advanced Technology Centre

200

250

150

Tension Testing of a woven composite material

Images 29 – 40. 620MPa – 820MPa. 9500 – 13600 ue (strain extracted and averaged over gauge area)

Test Sequence - Compression

BAE SYSTEMS

Compression Testing of a woven composite material

Images 0 to 11. 0 to 242 MPa, 0 – 4500 ue (strain extracted and averaged over gauge area)

Advanced Technology Centre

ATC Sowerby/june 2008/DTI/3D COMS

Strain Field Maps in Compression Specimens

BAE SYSTEMS

Image showing Exx strain map and specimen surface weave overlaid

Shear Tests – V Notch and Double Notch

Ability to measure local strains Data for validation of materials models

Fatigue – Very Low Cycle

Advanced Technology Centre

DT BAE SYSTEMS. BSSM 110310

Fatigue – Very Low Cycle

- High Rate Loading of Joints
- Loading rate up to 5m/s
- -Displacement
- Strain Field
- -Tested at Southampton University

Validation of Material FE Models

- -Simple geometry
- Strain field
- Load and Displacement

Testing of Components

BAE SYSTEMS

High Strain Rate Tests – Hopkinson Bar

•Materials Deformation and failure Models for FE Analysis

800

SS

Modulus

Max Strength

y = 0.9091Ln(x) + 68.477

Log. (Modulus)

High Strain Rate Tests – 100% Carbon Fibre Composite

100% Carbon - Tension 0° Longitudinal Results Strain Rate Tensile Fracture Failure				100% Carbon PID 64 Tensile Modulus and Maximum Strength v Strain Rate
Strain Rate	Tensile Modulus (E)	Fracture Strength $(\sigma_{\rm f})$	Failure Strain (ϵ_f)	
Low Strain Rate (4.6 – 6.3 x10 ⁻⁵ /s)	60.9 ± 2.7 GPa	770 ± 117 MPa	0.0128 ± 0.0012	
Intermediat e Strain Rate (1.47 – 2.64/s)	65.4 ± 3.8 GPa	818 ± 34 MPa	0.0125 ± 0.0010	
High Strain Rate (200 - 450/s)	63.3 GPa to 85 GPa	1032 to 1481 MPa	0.0128 ± 0.0015.	0 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+0 Strain Rate /s

DIC – High Strain Rate Testing of Materials

High rate compression of CFC

High rate tension of welded aluminiumNecking and failure may not occur at the centre of the gauge length

Rear view of composite panel hit by steel projectile at 120m/s

High Speed Impact

BAE SYSTEMS

Advanced Technology Centre

DT BAE SYSTEMS. BSSM 110310

Summary – Industrial Applications of DIC

- Digital Image Correlation technique is a useful and valuable tool
- Complement strain gauge techniques
- Applied to static and dynamic events
- 2D and 3D
- Strain measurement
- Displacement measurement
- Reanalyse images
- Support validation of FE techniques

Limitations

- Resolution spatial and temporal
- Speckle pattern
- Calibration
- Analysis can be expensive