

THE PHYSICS AND MECHANICS OF DYNAMIC SHEAR LOCALIZATION D. Rittel The Zandman Chair in Experimental Mechanics Faculty of Mechanical Engineering Technion - Israel Institute of Technology

Haifa, 32000 Israel

merittel@technion.ac.il http://www.technion.ac.il/~merittel

ACKOWLEDGEMENT

Past students (Dr. Z. Wang, Dr. LH Zhang) Prof. S. Osovski (Technion) Drs. A. Venkert and P. Landau (NRCN) Prof. A. Molinari (Metz) Prof. G. Ravichandran (Caltech) Prof. A. Needleman (U. Texas) Prof. J.A. Rodriguez and R. Zaera (UC3M Madrid) Prof. Murat Vural (IIT Chicago)

ISF OUTCOME (ITN-Horizon 2020)

Technion (1912-1924)

Haifa (North of Israel)

Technion today...

17 Faculties 1 School of Medicine

About 13000 students

3 Nobel laureates

The Dynamic Fracture Laboratory (DFL)

Develop tools (experimental and numerical) to:

1. Investigate the **thermomechanical response of materials** subjected to high loading rate (constitutive testing, failure modes and mechanisms)

2. Investigate the response of **cracks** subjected to impact loading (dynamic fracture mechanics)

3. Structural health monitoring (end effects, AC electrical tomography)

Research themes

- » Dynamic fracture mechanics
- » Thermomechanics of dynamic flow and fracture
- » Shear localization
- » Dynamic and ballistic behavior of polymers
- » Scaling of structural response to blast
- » New experimental techniques. High triaxiality
- » Dynamic testing of advanced ceramics: relation to microstructure.
- » Wave propagation in gels and soft matter
- » Structural health monitoring
- » Electrical impedance tomography
- » Scaling in dynamic fragmentation
- » Numerical simulation of dynamic structural failure
- » Biomechanics of dental implants (session BSSM)

Outline of the talk

- Statement of the problem
- On adiabatic shear: experiments (macroscale) and criterion
- Experiments (*microscale*) thermomechanics microstructure
- Modelling
- Conclusions

ADIABATIC SHEAR FAILURE

- Material / structural instability causing localization of the shear deformation into a narrow band when a material is subjected to dynamic loading (Tresca, 1879).
- Observed in many *metals* and *polymeric* materials (Bai and Dodd)

white etching ASB in 4340 steel x200

Artsi, Rittel and Roman, 1988

At the microscale.

ASB and crack x200

Plugging failure on the backside of an aluminum alloy armor plate (courtesy B. Dodd and F. Coghe)

In other words, the shear band is a local heterogeneity in an otherwise homogeneous neighborhood

Adiabatic shear

Accepted criterion: critical failure strain

3

THE ROLE OF T

- Thermomechanical coupling causes a homogeneous temperature rise prior to localization
- Mechanical energy \rightarrow Heat (PARTLY)

G. I. Taylor, M. Quinney; P. Roy. Soc. A-Math. Phy. 307 (1934).

D. Rittel, "On the conversion of plastic work to heat during high strain rate deformation of glassy polymers", *Mechanics of Materials*, Vol. 31, No. 2, (1999), 131-139.

RESULTS: Ti6Al4V – Real time T monitoring

NOTE THE MODEST AT PRIOR TO LOCALIZATION

More on thermomechanical coupling LH Zhang and S. Osovski

D. Rittel, LH. Zhang and S. Osovski, (2017), "The dependence of the Taylor-Quinney coefficient on the dynamic loading mode", J. Mech. Phys. Solids, 107, 96-114

- TQ coefficient is not a constant 0.9
- Recorded temperature rise prior to localization remains quite modest (30-50 degrees)
- Dependence on the deformation micromechanism (twinning vs. slip)
- Thermal softening????

A NEW CRITERION FOR ASB

Quasi-static preload followed by dynamic tests

Dynamic energy vs. normalized static pre-ε

Interim Summary

•	Balance of dynamic energy: W _M = W _T + W _S
•	$\mathbf{W}_{\mathbf{M}}$: mechanical energy. Observed constant
•	W_T : thermal energy. No significant role
•	W _s : stored energy of cold work. Relevant
•	W_s : emphasis on microstructural aspects and dynamic deformation only

D. Rittel, Z. G. Wang and M. Merzer, "Adiabatic shear failure and dynamic stored energy of cold work", (2006), Physical Review Letters, 96(7), 075502:1-4 A.

So, WHEN does localization start???

Central idea: Perform interrupted static and dynamic tests on a material (Ti6Al4V) that is prone to ASB shear localization, using the SCS specimen

F: fillet where ASB usually form

Interrupted tests

Quasi-static Ti6Al4Vspecimen - ε=0.17 not failed

(a) The typical microstructure consists of dislocation cells.
 (b) Area showing stress-induced (α") martensite (arrowed) transformed from the β phase, and its corresponding SADP.

Dynamically failed specimen ε=0.24

(a) Far from the ASB: Dislocation cells and stress-induced martensite. The typical SADP mainly contains misoriented α phase cells.

(b) Within the ASB: High dislocation density without any distinct morphology. The SADP shows incomplete rings indicating the presence of very fine recrystallized grains.

(c) Higher magnification of (b): The high dislocation density screens the fine grains revealed by the SADP.

Interrupted dynamic test – ε_r=0.45

Dynamically recrystallized grains (10-30 nm) formed in the highly dislocated area are indicated by arrows.

Free of dislocations. The corresponding SADP consists of ring patterns, typical of nanograined polycrystalline materials.

50nm

THIS SPECIMEN DID NOT FAIL!

An important observation (2008)

- Thorough TEM examination reveals a qualitatively identical microstructure for the interrupted and the fractured specimen.
- No new mechanism operates until failure
- One must therefore look for a quantitative evolution of the recrystallized phase. Difficult issue.... Under progress

D. Rittel, P. Landau and A. Venkert, (2008), "Dynamic recrystallization as a potential cause for adiabatic shear failure", Physical Review Letters, 101 (16), 165501.

So, HOW does ASB progress? (2016)

0.9 failure strain. Micro cracks in ASB

TEM (FIB) specimens

The cracks are located in islands of DRX Coarse grains away from the crack

nano grains (DRX close to the crack)

Dynamically recrystallized grains at the tip of a crack (box A).

The crack is perpendicular to the image. The crack tip location is indicated by the black arrow, at the mid-bottom of the image.

The dense DRX'ed region extends roughly **5 micron to each side**, with dashed lines delineating the extent of the DRX'ed region.

Sample between the cracks (box B): heavily deformed Ti matrix and small DRX'ed regions and highly deformed large grains (HDLG). **A single DRX island** is bounded by a white line. Corresponding diffraction patterns are inserted in the image.

(Box C), ~5 micron aside from the crack. Heavily deformed microstructure with a DRX island within it (marked by the white line), similar to the microstructure observed between the cracks (Box B). A twin is arrowed in the heavily deformed region.

P. Landau, S. Osovski, A. Venkert, V. Gartnerova and D. Rittel, (2016), "The genesis of adiabatic shear bands", *Scientific Reports*

Zooming: MD simulations

(Nanograins precipitate shear localisation (S. Chen, D. Mordechai and D. Rittel (2014), "Nanograins promote shear localization", *Materials Res. Letters*)

A quick peek at modelling results

Homogeneous distribution of stored energy (= DRX propensity)

Heterogeneous distribution of stored energy. MORE REALISTIC

P. Landau, S. Osovski, A. Venkert, V. Gartnerova and D. Rittel, (2016), "The genesis of adiabatic shear bands", *Scientific Reports*, 6:37226

Is that all?

- Dislocation slip is important but not the only deformation micromechanism
- Twinning (shear) is also of prime relevance in low stacking fault energy (SFE) materials.....
- Ti-6AI-4V deforms by slip only (high SFE)
- Pure Ti deforms primarily by twinning and some slip (lower SFE)

Some micrographs – Pure Ti Ti sample deformed to $\varepsilon = 0.9\varepsilon_f$ showing twins . No DRX found below that strain!

Same material at same strain. Different location. DRX is obvious

Twinning must not be overlooked!

- Twinninig dissipates energy, thus delaying or precluding DRX.
- The coalescence of DRX islands with large local strain-rates leads to final failure (percolation?).
- Modeling (including microstructural evolutions.

Going MACRO: Numerical implementation

25[mm] RHA plate

Trimmed 20[mm] FSP

• Material constitutive behavior - JC¹

RHA steel -38[Rc] hardness
σ_y=1500[MPa]

 $W_c = 450[MPa] \quad W_f = 1350[MPa]$

• Rate sensitive tensile failure criterion

Axi-symmetric simulation Used mesh – element size 0.6[mm] Initial condition of velocity

Experiments: RHA plate penetration

Shot	Measured impact	Depth of penetration	FSP	FSP	Inner crater	Outer crater
Number	velocity ±20[m/s]	or (P) perforation	weight	length	diameter	diameter
		±0.05[mm]	±0.01[gr]	±0.02[mm]	±0.05[mm]	±0.05[mm]
9	1151	11.05	46.79	20.32	36.30-37.40	-
6	1248	13.74	46.75	20.66	38.45-39.10	-
5	1256	14.09	46.89	20.73	39.45-41.15	-
7	1322	16.8	45.94	20.0	39.45-40.70	
8	1394	Р	46.51	20.58	39.85-41.70	21.35-26.90
3	1460	Р	46.60	20.95	41.70-42.50	23.60-26.70
4	1466	Р	46.36	20.5	41.05-43.90	22.65-24.75
2	1715	Р	47 68	21.06	48.35-49.60	27.15-28.90
1	1920	Р	46.74	20.68	49.20-54.05	28.95-30.45

Dolinski, M., Rittel, D., Experiments and modeling of ballistic penetration using an energy failure criterion. J. Mech. Phys. Solids , 2016.

Damage model parameters

Strain criterion
$$\sigma_{eq}^* = 1000 \ [MPa]$$
PSED criterion
 $\sigma_{eq}^* = 1000 \ [MPa]$ $D = \begin{cases} 0 & \varepsilon \leq \varepsilon_{cr} \\ \frac{\varepsilon - \varepsilon_{cr}}{\varepsilon_{f} - \varepsilon_{cr}} & \varepsilon \geq \varepsilon_{cr} \end{cases}$ $D = \begin{cases} 0 & W \leq W_{cr} \\ \frac{W - W_{cr}}{W_{f} - W_{cr}} & W \geq W_{cr} \end{cases}$ $\varepsilon_{cr} = 0.5$
 $\varepsilon_{f} = 1.5$ $W_{cr} = 500 \ [MPa]$

$$\sigma = \sigma^* \big(1 - D^b \big)$$

Parameters are determined experimentally

- Very high strains can be achieved
- Simplified material model

Dolinski, M., Merzer, M., Rittel, D., 2015. Plastic strain energy density as a criterion for dynamic failure – IJIE, 2015.

"Shear band toughness"

Comparison of impact velocity 1150[m/s]

	Experiment	Simulation
Impact velocity	1151±20[m/s]	1150[m/s]
DOP	$11.05 \pm 0.1 [mm]$	11.1[mm]
Crater diameter	36.3- 37.4±0.1[mm]	37.34[mm]
Bulge length	4.97±0.1[mm]	5.04[mm]

Penetration crater

Plate's rear side

Comparison of impact velocity 1400[m/s]

	Experiment	Simulation
Impact velocity	1394±20[m/s]	1400[m/s]
Crater maximal diameter	39.45-40.7±0.1[mm]	39.53[mm]
Plug exit velocity	196±20[m/s]	180±20[m/s]
Plug diameter	20.9-26.2±0.1[mm]	26.05[mm]
Plug height	$22.2 \pm 0.1 [mm]$	20.1[mm]

Plate's front side

plug

Comparison of impact velocity 1900[m/s]

	Experiment	Simulation
Impact velocity	1920±20[m/s]	1900[m/s]
Crater maximal diameter	49.20-54.05±0.05[mm]	49.24[mm]
Crater minimal diameter	28.95-30.45±0.05[mm]	28.99[mm]
Fastest fragment velocity	723±20[m/s]	700±10[m/s]

Plate's rear side

Plate's front side

M. Dolinski and D. Rittel, (2015), "Experiments and modeling of ballistic penetration using an energy failure criterion", *J. Mech. Phys. Solids*, 83, 1-18.

Conclusions

- Adiabatic shear has microstructural origins.
- DRX evolution and kinetics must be further studied and modeled, taking twinning into account.
- DRX is driven by stored strain energy (microstructure).
- Macro-modeling can be based on a strain energy density + damage criterion.

Thank you for your attention.