

Welcome:

X-RAY DIFFRACTION RESIDUAL STRESS MEASUREMENT OF SHOT PEENED COMPONENTS

Specializing in in X-ray diffraction systems for over 30 years:

- Residual Stress & Retained Austenite Measurement
- Laue Orientation of Single Crystal Materials
- Powder Diffraction
- X-ray Tubes
- Electropolishers

Customer Base:

 Over 500 X-ray Diffraction (XRD)systems installed around the world in automotive, aerospace, power generation, marine, military, research & university sectors.

Service Laboratories

 6 service laboratories with 20 XRD systems available for contract measurement work. Fast turn around time, competitive pricing. (USA, Canada, Japan, India, China, Poland)

Accreditation:

 ISO/IEC 17025:2005 Residual Stress & Retained Austenite Measurement

Major contributors to following Residual Stress specifications:

- ASTM E915 (major contributor)
- ASTM E1426
- ASTM E2860
- ASM Handbook Vol. 11
- MFN Shot Peening handbook

Publications:

• Over 70 papers published in peer reviewed journals on residual stress and x-ray diffraction.

Patents:

Worldwide patents on x-ray diffraction equipment and measurement techniques

Residual Stress

Finished Component:

Part A : Good

- Dimensionally Same
- Alloy / Chemistry Same
- Microstructure Same

Part B : Fails

Residual Stress Distribution Different

What is residual stress?

- Internal stress distribution locked into a material.
- Present even after all external loading forces have been removed.
- Result of a material obtaining equilibrium after it has undergone plastic deformation.

How does residual stress compare to applied stress?

- **Applied stress** is generated inside a material due to an **external** load. (often measured with a strain gauge).
- Residual stress is present inside the material regardless of loading.

Units of residual stress?

Force per Unit Area

MPa = Mega Pascals or ksi = thousands of pounds per square inch

1 ksi = 6.895 MPa

Stress can be thought of as a kind of pressure

Defining residual stress at a point. Stress is a tensor. Multiple values at a single point

6 independent values. 3 Normal stresses - 3 Shear stresses.

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$

How does residual stress affect a component?

Tensile (+) residual stress or the stress that is causing the material to be stretched or pulled is often **detrimental** in a component.

Compressive (-) residual stress or the stress that is causing a material to be compacted or pushed together is often beneficial in a component.

Tensile

Types of Residual stress

Type I (Macro Residual Stresses): are the average over a group of grains in the material, ~mm scale.

Type II (Micro Residual Stresses): residual stress in one grain. It may vary from grain to grain because of the elastic and plastic anisotropy. May also develop in multi-phase materials as a result of the different properties of the different phases example: Titanium (Alpha vs Beta phase).

Type III (Micro Residual Stresses): Exist within a grain essentially as a result of the presence of dislocations and other crystalline defects.

How does residual stress affect a component?

• Net sum of all residual stresses across any cross section is always zero.

 Across any cross section of a component there is typically a residual stress distribution.

• Residual stress distribution affects performance.

How does residual stress affect a component?

•Residual stress sometimes as high as the yield stress of the material.

•Residual stress can often be larger than the applied stresses.

•Typical values of residual stress are anywhere between -1000 and + 1000 Mpa

•Materials with higher yield points will retain higher residual stress.

Are residual stresses real stresses?

• Yes: from a material's point of view there is no difference between residual or applied stress, a material can only take so much stress...

- Atoms don't know the difference between external loads and internal stress.
- High levels of residual stresses can greatly alter the expected performance of a material.

How is residual stress created in a material?

Cause	Example
Mechanical	Plastification of a material during machining.
Thermal	Difference in solidification of the material. (i.e. in a cooling casting)
Phase Changes	Precipitation / Phase transformation resulting in a volume change (i.e. Austenite to Martensite)

Sources of residual stress during manufacturing

- Machining such as grinding, turning, milling
- Welding
- Rolling
- Forging
- Surface enhancements such as peening

What do residual stresses look like from manufacturing processes?

Weld Stresses : Stress [ksi] Tensile residual stress in Heat Affected Zone (HAZ) 33.4 26.6 . 19.7 . 12.8 < 5.9 -0.9 -7.8 -14.7 -21.6 -28.4 -35.3 × [mm] 3.0 1.0 Y [mm] 9.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.99.0

Evaluate Surface Treatments: Shot Peening

Evaluate Surface Treatments: Shot Peening

Evaluate Surface Treatments: Shot Peening

Drilled no coolant

Drilled with coolant

Drilled with coolant

and shot peened

0.0053 in

0.0050 k

- Louis

Crack Initiation and Propagation

Residual Stress - Effect on Cracks

Tensile residual stress opens crack and increases crack propagation

Compressive residual stress closes crack and slows crack propagation

Crack Initiation and Propagation

Crack Initiation and Propagation

Crack initiation phase: NDT can not detect yet (Time in this phase highly dependent on residual stress)

Crack propagation phase: NDT can usually detect

Failure

What techniques are available to measure residual stress?

Technique	Time for One Measurement	Spatial Resolution	Depth of measurement	Best Accuracy (MPa)	Limitations	Calibration
<u>Ultrasonic</u>	5 to 20 min	0.1 to 30 mm ²	60 to 300 µm	10 to 20	Microstructure effects Qualitative	Required
<u>Barkhausen</u>	1 sec to10 min	1 mm ²	0.1 to 1 mm	10 to 20	Non-ferromagnetic materials & microstructure effects Qualitative	Required
<u>Eddy</u> <u>Current</u>	1 sec to10 min	1 mm²	60 to 200 µm	Unknown	Limited materials Material & microstructure effects Qualitative	Required
<u>Neutron</u> <u>diffraction</u>	5 min to 2 hrs	1 mm ³	70um to 30 cm in Al, 3 cm Steel	10 to 20	Depths greater than 1mm, texture and coarse grain size	Not Required
<u>X-ray</u> <u>diffraction</u>	0.5 sec to 2 hrs	0.5 mm² or less	5 to 30 µm	5 to 10	Texture and coarse grain size increase measurement error	Not Required
<u>Sectioning</u>	40 min to >5 hrs	100 mm ²	1 to 2 mm	10	Partial Measurement of RS, parts must be cut or machined	Not Required
Hole drilling	40 min to 2 hrs	0.5 mm ²	50 µm	35	Geometry, high residual stresses, and high stress gradients	Not Required

Why we prefer X-ray Diffraction (XRD).

- Excellent spatial resolution.
- Can measure in complex geometries such as a gear root.
- Fast 2 to 3 minutes per measurement
- Nondestructive.
- Measures residual stress quantitatively.
- Applicable for metals and ceramics.

XRD in action.

XRDWIN 2.0 Software- Sample Screen Shot

• Measurements of atomic spacing will give the
$$\mathcal{E}_{\varphi\psi} = \frac{d_{\varphi\psi} - d_0}{d_0}$$

strain of the material.

• Strain is converted to stress via Hook's Law: $\mathcal{E} = \frac{\sigma}{E}$

$$\varepsilon_{\varphi\psi} = \frac{d_{\varphi\psi} - d_0}{d_0} = \frac{1}{2} S_2 \sigma_{11} \sin^2 \psi + \frac{1}{2} S_2 \sigma_{13} \sin 2\psi - S_1 (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

Where: ε = measured strain from Bragg's Law σ = stress in sample ψ and ϕ = measurement direction

Converting from strain to stress.

- XEC can be determined for an alloy using a 4- point bend apparatus.
- XEC is known for most common alloys.

Standards & Guidelines

- •SAE HS784 RS measurement
- •ASTM E915 RS measurement
- •ASTM E1426 4 pt bend XEC
- •ASM Handbook Vol.11 General guidelines

Accuracy of XRD for residual stress

- Measurement error can be as low as ± 10 MPa.
- X-ray beam can be sized from 0.040 mm to 5 mm to analyze features.
- Measurement time is 2 to 5 minutes per location. (MET). A few seconds for (SET)
- Works on highly ordered polycrystalline materials only (i.e. metals and ceramics.)

Common XRD measurement geometries (detector and beam arrangement) for RS

- $sin^2\psi$ Multiple Exposure
- $sin^2\psi$ Single Exposure
- $sin^2\chi$ Multiple Exposure
- $sin^2\chi$ modified Multiple Exposure
- $sin^2\chi$ Single Exposure
- cosα

Each has its own advantages and disadvantages

Residual Stress Measurement Examples

Stress profiling through a part.

- XRD is a surface techniques. X-ray beam only penetrates 5 to 10 microns into the material.
- Electropolish to remove layers to generate stress vs. depth curves.

Electropolishing Spot

Stress profiling through a component

Quality Control of a Peened Spring

 Compare the residual stress in vintage springs, current production with increased field failure incidence and improved peening process.

Quality Control of a Peened Spring

The future for residual stress in component manufacturing.

- Improved quality control of manufacturing processes.
- Increase fatigue life of critical components.
- Use of residual stress as a gauge of the health of in-service components.
- Decrease costs by using lower cost materials with designed in residual stress to enhance the performance of the material.

The Equipment

iXRD – MG40 Goniometer and Field Stand #2

Residual Stress & Retained Austenite

Features		
Control unit	iXRD	
Power	300 Watts	
Goniometer	MG40	
Geometry	iso, modified-χ	
Field Stand	#2	
Travel	100 or 200 mm Z axis, Cobra Arm	

iXRD - MGR40 Goniometer and Field Stand #4

Residual Stress Mapping & Retained Austenite

Features	
Control unit	iXRD
Power	300 Watts
Goniometer	MGR40
Geometry	iso, modified-χ
Field Stand	#4
Travel	100 mm X,Y Z axis Cobra Arm

iXRD Floor Stand - MGR40 Goniometer and Field Stand #4

Residual Stress Mapping & Retained Austenite

Features	
Control unit	iXRD
Power	300 Watts
Goniometer	MGR40
Geometry	iso, modified-χ
Field Stand	#4
Travel	100 mm X,Y Z axis Cobra Arm
Floor Stand	920 mm Z-axis and 560 mm Y-axis.

iXRD Combo

Residual Stress & Retained Austenite

Features	
Control unit	iXRD
Power	300 Watts
Goniometer	MG40
Geometry	lso, modified-χ
Sample Positioning	200 mm X,Y Z axis Phi rotation stage Cobra Arm
Cabinet Dimensions	1.6 x 1.1 x 1.8 m

Residual Stress & Retained Austenite

Features		
Control unit	iXRD	
Power	300 Watts	
Travel	760 mm Z axis 2100 x 650 mm XY axis 360° φ rotation	
Goniometer	MGR40	
Geometry	iso, modified-χ	
Cabinet Dimensions	2700 x 1100 x 2600 mm	

LXRD

Residual Stress & Retained Austenite

Features		
Control unit	LXRD	
Power	1200 Watts	
Travel	500 mm Z axis 200 mm X,Y stage 360° φ rotation stage	
Goniometer	MG2000	
Sample Positioning	Mapping Stages	
Geometry	lso, modified-χ	
Cabinet Dimensions	1.1 x 0.7 x 1.9 m	

LXRD Widebody

Residual Stress & Retained Austenite

Features		
Control unit	LXRD	
Power	1200 Watts	
Travel	700 mm Z axis 300 mm X,Y stage 360° φ rotation stage	
Goniometer	MG2000	
Geometry	lso, modified-χ	
Cabinet Dimensions	1.1 x 1.1 x 1.9 m	

Residual Stress & Retained Austenite

Features		
Control unit	LXRD	
Power	3000 Watts	
Travel	300 mm Z axis 100 mm X,Y stage 360° φ rotation -45° to +51° χ axis	
Goniometer	MG2000+Chi axis	
Geometry	lso, side inclination, modified-χ	
Cabinet Dimensions	1.1 x 0.8 x 1.9 m	

mXRD Ultraportable

Residual Stress

Features		
Control unit	mXRD	
Power	40 Watts	
Travel	50 mm Z axis	
Goniometer	MG15	
Geometry	iso	

LXRD Modular Mapping

Residual Stress & Retained Austenite

Features		
Control unit	LXRD	
Power	3000 Watts	
Travel	500 mm Z axis 200 mm X,Y stage 360° φ rotation	
Goniometer	MG2000	
Geometry	lso, modified-χ	
Cabinet Dimensions	2.5 x 1.9 x 2.0 m	

ROTOLXRDSYSTEM

UD

LXRD Gantry

	PROJOLXA
	C C C C C

Residual Stress & Retained Austenite

Features	
Control unit	LXRD
Power	3000 Watts
Travel	800 mm Z axis 2500 mm X,Y axis 360° φ rotation
Goniometer	MGR2000
Sample Positioning	Gantry System
Geometry	lso, modified-χ
Dimensions	3.8 x 3.6 x 4.0 m

Thank You