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1. Introduction — Deformation mechanisms

Plastic behavior in metals

1. Dislocation glide (slip) i ; %% é

|
|

Rauch et al., 2011
2. Other mechanisms
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1. Introduction

Continuum scale plasticity

Crystal plasticity (slip, twinning and homogenization schemes)

Dislocation dynamics (dislocation network with interaction rules)
Multiphase material modeling (unit cells)

Atomistic (lattice with interatomic potentials) and ab-initio

This presentation is about continuum scale plasticity
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Variables

« External variables (elastic strain, plastic strain, strain rate, temperature)

« Thermodynamically conjugate variables through the expression of the
free energy (stress, entropy)

» State variables assumed to represent deformation mechanisms (explicitly
or implicitly)

Context of this presentation
» Rate and temperature-independent behavior (mostly)
* |sotropic hardening (applicable for monotonic loading)

» Anisotropic hardening (applicable for non-monotonic loading)
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Total strain increment

 Elastic—plastic decomposition

detot = defl@ + deP'@  (deP!® = dg in this presentation)

Plasticity concepts

* Yield condition (applied stress equal to yield stress in uniaxial tension)

» Hardening model (stress-strain curve in uniaxial tension)

* Flow rule de (degrgns = — 1/, dejong for isotropic material in uniaxial
tension)
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modeling — Plasticity concepts

Yield condition
®(o) =0 forinstance E(Jij) — 0, =0
 Effective stress and yield stress

* Yield condition defines yield surface

Hardening rule

« Same Yield condition but with evolving state variables (microstructure)
®(0,0,x) =0 forinstance a(6) —or(0,x) =0

« x represents (scalar or tensorial) state variables
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Flow rule

* Associated or non-associated. For metal, associated flow rule is
consistent with plastic deformation mechanisms

* Argument based on crystal plasticity by Bishop and Hill (1951) general
approach (not restricted to specific boundary conditions)

0P
de = d/lg

» Work-equivalent effective strain gdé = o : de defines a possible state
variable (accumulated deformation or accumulated dislocations)

: _00
- Associated flow rule reducesto d€ = dea

Choice of the yield condition fully defines the material behavior
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Isotropic yield conditions
5(6) — op(8) =0
* The effective stress is based on invariants such as von-Mises, Tresca,
Hershey, etc.
1/a

__1a __1a __1a
g = {lal liall 203| +loy ol } — 0r(8) = 0 (Hershey, 1954)

* Principal stresses are invariants

* Non-quadratic and convex yield function

» Reduces to Tresca or von-Mises for specific values of a

* ldentification of o (£), e.g., using least square approximation. Issue for
extrapolation
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3. Isotropic hardening — Anisotropic material

Anisotropic yield conditions

« Same yield condition as for isotropic case but stress components must be
expressed in material symmetry axes (eg., RD, TD, ND)

6(0) —or(§) =0
Effective stress based on Hill (1948)

* Plane stress case

_ 2 5 2 , 1172 _
o= {F(ayy — O'ZZ) + G(0,5 — Oxy)” + H(axx — O'yy) + ZNaxy} = 0 (&)

» Reduces to von Mises for specific values of F, G, H and N

* |ssue for identification F, G, H and N: Based on i
flow stresses or r -value in uniaxial tension? t
A «w> €t
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3. Isotropic hardening — Anisotropic material

Hill (1948) plane stress
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3. Isotropic hardening — Anisotropic material

r-value

3.00 —
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Hill (1948) plane stress
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3. Isotropic hardening — Anisotropic material

Hill (1948) plane stress
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3. Isotropic hardening — Anisotropic material

Hill (1948) limitations

« Cannot, in general, model uniaxial tension properly

» Use average behavior (still inaccurate) or non-associated flow rule with
strain potential (not based on the physics of slip)

Non-quadratic yield functions and isotropic hardening

* Note that Hill (1948) cannot be generalized direcitly, i.e.,

» This formulation does not work because it is component-based, not
Invariant based
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Non-quadratic yield functions

* Linear stress transformation approach

- For instance, with two transformations ¢'® = C® : ¢’ (t = 1,2)
* Plane stress case: Y1d2000-2d

a 1/a
- U~’(1)_O.2(1)‘ _I_‘Zo.l(z)_l_o.l(z)‘ +‘2 l(z)_l_o.z(z)‘ }

0 = > = og (&)

- Total of eight anisotropy coefficients in C"and ¢?

« Reduces to isotropic Hershey (1954) when CYand C® are the identity
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Non-quadratic yield functions

» General stress state YId2004-18p

1,3 1/Cl
1>, i
N R RPN
p.a
- Total of 16 independent anisotropy coefficients in C“and C®

« Reduces to isotropic Hershey (1954) when CYand C® are the identity

» Advantage of linear transformations compared to other approaches for
plastic anisotropy: Preserve convexity of the isotropic function
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3. Isotropic hardening — Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening — Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening — Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening — Anisotropic material
Strength differential (SD) effect

» |Isotropic yield function (Cazacu et al., 2006)
1/a
—0g(&) =0

_ {“J{|—kd{|a+||a£|—ka£‘a+“a§|—ka§‘a}
0O =
K

* Constant coefficient K

20(1—k) 44+2(1+k) a}l/“

. : i I 2 ==
Compression to tension ratio {2“(1+k)a+2(1—k)a

Ot

» Anisotropic yield function using linear transformation
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3. Isotropic hardening — Anisotropic material

Twinning yield surfaces
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3. Isotropic hardening — Validation

Oy (kg/mm?)
5052-H35 30 0:0"

Biaxial compression testing

« stacked sheet specimen

Sl
i
&
|

S

Tozawa, 1978
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3. Isotropic hardening — Validation

Biaxial compression testing
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3. Isotropic hardening — Validation

Biaxial tension testing

ISO 16842: 2014

Metallic materials —Sheet and strip —Biaxial
tensile testing method using a cruciform test
piece

Tubular specimens ; RD

>

Clamping area
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Cruciform specimens

Kuwabara and Sugawara, 2013
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3. Isotropic hardening — Validation

Contour of plastic work for DP 600 steel

900 ,
E=
G o 0.002
% o 0.03
= A 0.06
; v 0.09
$ & 012
= <4 0.16
0 .
S 6.20]
I: 5.98 Y1d2000-2d
I a =7.6D8 .
DP600 steel j f
o S R
0 300 600 900 Hakoyama and
True stress o, /MPa Kuwabara, 2015
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4. Anisotropic hardening

Approaches

* Differential hardening

» Kinematic hardening
« Combined kinematic - isotropic hardening
« Combined kinematic hardening and distortional plasticity

« Distortional plasticity only
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4. Anisotropic hardening — Differential hardening

Differential hardening

 Hill and Hutchinson (1992)

« Can be modelled by varying the coefficients of an isotropic hardening model

» Relatively simple but based on one given strain path only
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4. Anisotropic hardening — Differential hardening

Example based on experimental data
800 —1r r r rr r - 1t - 1 1 & 1T * 1

700 - Balanced biaxial tension

True stress/MPa

Solid line: Experiment
Dash line: Crystal plasticity

AlISI 409 stainless steel

0 1 ' | ! | ' | ! | ! | ! I

.05 000 005 0140 045 0.20 0.25 030 0.35 0.40
Plastic strain
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4. Anisotropic hardening — Differential hardening

Example based on crystal plasticity of Zr
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Plunkett et al., 2006
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4. Anisotropic hardening — Differential hardening

Example based on crystal plasticity of Zr (Taylorimpact test application)
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4. Anisotropic hardening — Kinematic hardening

Linear kinematic hardening

®(o,x) =c(oc—X) — gy = 0 (Prager, 1949)

 One state variable: Back-stress X = X4 X=CD
O3 (o]
actual | oo __ * ........ G
k
--------------- 1
initial X Yield surface translate
surface
............. >
/ ’
o) (o))
Ec_;‘lsiiEHT Graduate Institute of Ferrous Technology .31. T T

Pohang University of Science and Technology

Graduate Institute of Ferrous Technology



4. Anisotropic hardening — Kinematic hardening

Non-linear kinematic hardening

« Chaboche et al. (1979)

6(8,X)=Y+R(§) X = (D — VX2
7‘ \ \Hardening ree

Back-stress . -
Yield stress R=—¢

Evolution equations

* Hu and Teodosiu (1995) Polarization
Back-stress \ / of dislocation

G(S,X,M) v R(S,P) structure

7 )

Texture anisotropy Strength of
(constant) dislocation structure
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4. Anisotropic hardening — Kinematic hardening

Translating surfaces

N

Two surfaces Multiple nested surfaces
(Dafalias and Popov, 1975) (Mroz, 1967)
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4. Anisotropic hardening — Kinematic hardening

Two surfaces

0]
« Yoshida and Uemori (2002) N Yield
surface
* Yield surface evolution Bounding
surface ./ |
f=¢(s—a)-Y=0
7‘ \ >0,
Back-stress 1 Yield stress
 Bounding surface evolution Mo
F=0(s—B)-(B+R)=0
Back-stress 2 N _ araening
Initial size
boundary surface
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4. Anisotropic hardening — Validation

Biaxial compression testing — Stacked sheet specimens

Tozawa, 1978
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Yield loci at € = 0.2% for
steel (S10C) pre-

stretched by various
strains in tension

Epre = 0.05
Epre = 0.10
€ore = 0.20

Tozawa, 1978
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4. Anisotropic hardening — Validation

y Yield loci at € = 0.2% for
steel (S10C) pre-

stretched by various
strains in tension

Epre = 0.05
Epre = 0.10
€ore = 0.20
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4. Anisotropic hardening — Dbistortional plasticity only

Homogeneous anisotropic hardening (HAH)

1
Homogenous —(.\_ a
function G(S)_{ )‘} B

No kinematic g4 tive Fluctuating Stable Flow stress
hardening stress component component
(Bauschinger effect)

qa £4q
. f1 »fz describe the amount of distortion

c @ (S) replaced by a_)CL (S) for cross-loading & latent effects

Microstructure deviator

* Tensorial state variable with evolution rule

* Mimics delays in formation / rearrangement of dislocation structures
* Provides a reference for distortion
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4. Anisotropic hardening —

Reverse loading

« Anisotropic material 1

» Loading sequences

— (I) RD tension
— (II) RD compression

 Effects captured
— Distortional hardening
— Bauschinger effect

* Note
— Half and half

HAH model
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4. Anisotropic hardening —

Cross-loading
« Anisotropic material 2

* Loading sequence

— () RD tension
— (Il) Near TD plane strain
tension

» Effects captured
— Distortional hardening

HAH model

— Bauschingereffect 0/
. . r
— Cross-loading contraction
— Latenthardening
* Note
— Proportional loading (proof)
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4. Anisotropic hardening — HAH model

Coefficient identification
» Sequential

Proportional loading
« HAH reduces to isotropic hardening response (anisotropic yield function)

- Same identification procedure as that of isotropic hardening ( GR(E), a_)(s))

Reverse loading
* Independentidentification of coefficients (Bauschingerand other effects)

Cross-loading
* Independentidentification of coefficients (latent hardening and other effects)
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4. Anisotropic hardening — HAH model

Forward and reverse simple shear

1600
Pre-strain: 1.8 % and 2.6 %
1400
1200 - Compression Tension

(U
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)

o
|

True stress (MPa)
o0
S
-

600 |- I
N
400 |
O  Experiement
200 HAH model
— YU model
O | | |
0.00 0.02 0.04 0.06 0.08
True strain Choi et al., 2017
E":iiiu'r Graduate Institute of Ferrous Technology 42 TS ]

Pohang University of Science and Technology



4. Anisotropic hardening —

HAH model

Forward and reverse simple shear (TRIP 780 steel)

600

400

N
o
o

Shear stress (MPa)
o

-200
-400
-600 .............................
............................. TRIb780
-0.02 0 0.02 0.04

Shear strain

Fu et al. (2017)
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4. Anisotropic hardening — HAH model

Forward and reverse simple shear cycles (DP 600 & TWIP 980 steels)

450
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400}-{~—-Original HAH -- Modified HAH ° Exp|. 500 ---Original HAH --- Modified HAH ° Exp
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3 1 i ® I/ A
@ 200 4 | B 300l |.§ L i
5 ] d 501 : : ¥
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Cumulated shear strain

Fu et al. (2017)
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5. Final remarks

Plasticity remains a topic with many challenges

» Anisotropic material under isotropic and anisotropic hardening
 Numerical implementation
* |dentification with complex evolution equations

» Applicability for industrial problems
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