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1.  Dislocation glide (slip)

Rauch et al., 2011

1. Introduction – Deformation mechanisms 

Hull, 
1983

2.  Other mechanisms

Plastic behavior in metals
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Continuum scale plasticity

Multiphase material modeling (unit cells)

Crystal plasticity (slip, twinning and homogenization schemes)

1. Introduction – Approaches 

Dislocation dynamics (dislocation network with interaction rules)

Atomistic (lattice with interatomic potentials) and ab-initio

This presentation is about continuum scale plasticity
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• External variables  (elastic strain, plastic strain, strain rate, temperature)

• State variables assumed to represent deformation mechanisms (explicitly 
or implicitly)

• Thermodynamically conjugate variables through the expression of the 
free energy (stress, entropy)

Variables

2. Plasticity modeling – Approaches 

Context of this presentation

• Rate and temperature-independent behavior (mostly) 

• Isotropic hardening (applicable for monotonic loading)

• Anisotropic hardening (applicable for non-monotonic loading)
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Plasticity concepts

• Hardening model (stress-strain curve in uniaxial tension)

• Flow rule  𝑑𝛆	 (𝑑𝜀%&'() = − ,
-⁄ 𝑑𝜀/0(1 for isotropic material in uniaxial 

tension)

• Yield condition (applied stress equal to yield stress in uniaxial tension)

2. Material modeling – Approaches 

• Elastic–plastic decomposition  

Total strain increment

𝑑𝛆%0% = 𝑑𝛆2/' + 𝑑𝛆4/' (𝑑𝛆4/' = 𝑑𝛆 in this presentation)
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Hardening rule

• 𝑥 represents (scalar or tensorial) state variables 

• Same yield condition but with evolving state variables (microstructure) 

Yield condition

𝛷 𝛔 = 0 for instance      𝜎; 𝜎<= − 𝜎> = 0

𝛷 𝛔, 𝛩, 𝑥 = 0	 for instance     𝜎; 𝛔 − 𝜎A 𝛩, 𝑥 = 0

2. Material modeling – Plasticity concepts

• Effective stress and yield stress

• Yield condition defines yield surface



Graduate Institute of Ferrous Technology 
Pohang University of Science and Technology - 8 -

• Argument based on crystal plasticity by Bishop and Hill (1951) general 
approach (not restricted to specific boundary conditions)  

Flow rule
• Associated or non-associated. For metal, associated flow rule is 

consistent with plastic deformation mechanisms

𝑑𝛆 = 𝑑𝜆 CD
C𝛔

• Work-equivalent effective strain  𝜎;𝑑𝜀̅ = 𝝈 ∶ 𝑑𝛆 defines a possible state 
variable (accumulated deformation or accumulated dislocations)

2. Material modeling – Plasticity concepts

Choice of the yield condition fully defines the material behavior

• Associated flow rule reduces to 𝑑𝛆 = 𝑑𝜀̅ CHI
C𝛔
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• Principal stresses are invariants 

• The effective stress is based on invariants such as von-Mises, Tresca, 
Hershey, etc.

𝜎; = HJKHL MN HLKHO MN HOKHJ M

-

, '⁄
− 𝜎A 𝜀̅ = 0 (Hershey, 1954)

• Reduces to Tresca or von-Mises for specific values of 𝑎

• Non-quadratic and convex yield function

• Identification of 𝜎A 𝜀̅ , e.g., using least square approximation.  Issue for 
extrapolation    

𝜎; 𝛔 − 𝜎A 𝜀̅ = 0

3. Isotropic hardening – Isotropic material

Isotropic yield conditions
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• Reduces to von Mises for specific values of F, G, H and N

• Plane stress case

𝜎; 𝛔 − 𝜎A 𝜀̅ = 0

𝜎; = 𝐹 𝜎>> − 𝜎RR
- + 𝐺 𝜎RR − 𝜎TT - + 𝐻 𝜎TT − 𝜎>>

- + 2𝑁𝜎T>-
, -⁄

= 𝜎A 𝜀̅

• Issue for identification F, G, H and N: Based on 
flow stresses or 𝑟	-value in uniaxial tension?

• Same yield condition as for isotropic case but stress components must be 
expressed in material symmetry axes (eg., RD, TD, ND) 

𝑟 = YZ
Y[

3. Isotropic hardening – Anisotropic material

Anisotropic yield conditions

Effective stress based on Hill (1948)
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3. Isotropic hardening – Anisotropic material

Hill (1948) plane stress
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3. Isotropic hardening – Anisotropic material

Hill (1948) plane stress
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𝜎; = 𝐹 𝜎>> − 𝜎RR
' + 𝐺 𝜎RR − 𝜎TT ' + 𝐻 𝜎TT − 𝜎>>

' + 2𝑁𝜎T>'
, '⁄

= 𝜎A 𝜀̅

• Note that Hill (1948)  cannot be generalized directly, i.e.,

• This formulation does not work because it is component-based, not 
invariant based

• Cannot, in general, model uniaxial tension properly  

Non-quadratic yield functions and isotropic hardening

• Use average behavior (still inaccurate) or non-associated flow rule with 
strain potential (not based on the physics of slip)

3. Isotropic hardening – Anisotropic material

Hill (1948) limitations
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• For instance, with two transformations 𝛔′ % = 𝐂 % ∶ 𝛔′ (𝑡 = 1,2 ) 

Non-quadratic yield functions

𝜎; =
H̀J
a J KH̀L

a J M
N -H̀L

a L NH̀J
a L M

N -H̀J
a L NH̀L

a L M

-

, '⁄

= 𝜎A 𝜀̅

• Plane stress case: Yld2000-2d

• Total of eight anisotropy coefficients in 𝐂 , and 𝐂 -

• Linear stress transformation approach

• Reduces to isotropic Hershey (1954) when 𝐂 , and 𝐂 - are the identity

3. Isotropic hardening – Anisotropic material
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• General stress state Yld2004-18p 

𝜎; =
1
4c 𝜎d4

e , − 𝜎df
e - '

,,g

4,f

, '⁄

= 𝜎A 𝜀̅

• Total of 16 independent anisotropy coefficients in 𝐂 , and 𝐂 -

• Reduces to isotropic Hershey (1954) when 𝐂 , and 𝐂 - are the identity

• Advantage of linear transformations compared to other approaches for 
plastic anisotropy: Preserve convexity of the isotropic function 

3. Isotropic hardening – Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening – Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening – Anisotropic material

Non-quadratic yield functions
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3. Isotropic hardening – Anisotropic material

Non-quadratic yield functions
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𝜎; =
HJa KhHJa

M
N HLa KhHLa

M
N HOa KhHOa

M

i

, '⁄

− 𝜎A 𝜀̅ = 0

• Isotropic yield function (Cazacu et al., 2006) 

• Compression to tension ratio  Hj
H[
= -M ,Kh MN- ,Nh M

-M ,Nh MN- ,Kh M

, '⁄

• Anisotropic yield function using linear transformation 

3. Isotropic hardening – Anisotropic material

Strength differential (SD) effect

• Constant coefficient 𝐾
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3. Isotropic hardening – Anisotropic material

Cazacu et al., 2006

Twinning yield surfaces
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Good agreement between 
experiments, crystal plasticity  and
- Plane stress Yld2000-2d
- General stress Yld2004-18p  • stacked sheet specimen 

5052-H35

1100-O

3. Isotropic hardening – Validation

Biaxial compression testing

Tozawa, 1978
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3. Isotropic hardening – Validation

Biaxial compression testing

𝑟 = YZ
Y[
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ISO 16842: 2014 
Metallic materials −Sheet and strip −Biaxial 
tensile testing method using a cruciform test 

piece

3. Isotropic hardening – Validation

Biaxial tension testing

Tubular specimens

Cruciform specimens
Kuwabara and Sugawara, 2013
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3. Isotropic hardening – Validation

Hakoyama and
Kuwabara, 2015

Contour of plastic work for DP 600 steel
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• Kinematic hardening 

• Differential hardening 

• Combined kinematic hardening and distortional plasticity

• Distortional plasticity only

4. Anisotropic hardening 

• Combined kinematic - isotropic hardening 

Approaches
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Differential hardening

• Hill and Hutchinson (1992)

• Can be modelled by varying the coefficients of an isotropic hardening model

• Relatively simple but based on one given strain path only

4. Anisotropic hardening – Differential hardening
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4. Anisotropic hardening – Differential hardening

Example based on experimental data

RD uniaxial tension

Balanced biaxial tension

AISI 409 stainless steel

Solid line: Experiment
Dash line: Crystal plasticity
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4. Anisotropic hardening – Differential hardening

Example based on crystal plasticity of Zr

Plunkett et al., 2006
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4. Anisotropic hardening – Differential hardening
Example based on crystal plasticity of Zr (Taylor impact test application)

Major profile Minor profile Footprint

Plunkett et al., 2006Maudlin et al., 1999
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𝛷 𝛔, 𝑥 = 𝜎; 𝛔− 𝐗 − 𝜎> = 0 (Prager, 1949)

• One state variable: Back-stress 		𝐗 = 𝐱, �̇� = 𝐶𝐃

Yield surface translate

4. Anisotropic hardening – Kinematic hardening

Linear kinematic hardening
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  σ s,X( ) = Y +R ε( )
Yield stress

Back-stress Hardening

Evolution equations

�̇� = 𝐶𝐃 − 𝛾𝐗𝜀̅̇

�̇� =
𝑑𝑅
𝑑𝜀̅

𝜀̅̇

• Chaboche et al. (1979)

Non-linear kinematic hardening 

• Hu and Teodosiu (1995)

  σ s,X,M( ) = Y +R S,P( )
Texture anisotropy 

(constant)
Strength of 

dislocation structure

Polarization 
of dislocation 

structure
Back-stress

4. Anisotropic hardening – Kinematic hardening



Graduate Institute of Ferrous Technology 
Pohang University of Science and Technology - 33 -

Translating surfaces

Two surfaces 
(Dafalias and Popov, 1975)

4. Anisotropic hardening – Kinematic hardening

Multiple nested surfaces
(Mroz, 1967) 
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Two surfaces

  f = φ s − α( )− Y = 0

  F = φ s − β( )− B +R( ) = 0

• Yield surface evolution

Initial size 
boundary surface

Yield stressBack-stress 1

Back-stress 2 Hardening

π-plane

Bounding 
surface

Yield 
surface

• Yoshida and Uemori (2002)

4. Anisotropic hardening – Kinematic hardening

• Bounding surface evolution
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4. Anisotropic hardening – Validation

Biaxial compression testing – Stacked sheet specimens

Tozawa, 1978
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3. Isotropic hardening – ValidationDistortional hardeningYield loci at ε = 0.2% for 
steel (S10C) pre-

stretched by various 
strains in tension

εpre = 0.05

εpre = 0.20
εpre = 0.10

Tozawa, 1978
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εpre = 0.20

Yield loci at ε = 0.2% for 
steel (S10C) pre-

stretched by various 
strains in tension

εpre = 0.05
εpre = 0.10

4. Anisotropic hardening – Validation
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Homogeneous anisotropic hardening (HAH)

			
ω F s, f1q , f2q ,ĥ( )q + 	 	⎧

⎨
⎩

⎫
⎬
⎭

1
q
= 	σ R ε( )

Flow stressFluctuating 
component

(Bauschinger effect) 

!	
Microstructure deviator
• Tensorial state variable with evolution rule
• Mimics delays in formation / rearrangement of dislocation structures
• Provides a reference for distortion 

• replaced by                   for cross-loading & latent effects	ω s( ) 		ωCL s( )
		f1
q , f2q• describe the amount of distortion

Homogenous 
function

No kinematic 
hardening

Effective 
stress

		ω s( )q

Effective 
stress

Stable 
component

	σ s( ) =

4. Anisotropic hardening – Distortional plasticity only
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• Effects captured
− Distortional hardening
− Bauschinger effect

• Loading sequences 
− (I)  RD tension
− (II) RD compression

Reverse loading

• Anisotropic material 1

• Note
− Half and half

		ĥ

Yld2000-2d
(real anisotropic 

material)

4. Anisotropic hardening – HAH model
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• Effects captured
− Distortional hardening
− Bauschinger effect
− Cross-loading contraction
− Latent hardening

• Loading sequence
− (I)  RD tension
− (II) Near TD plane strain 

tension

Cross-loading

• Anisotropic material 2

• Note
− Proportional loading (proof)

		ĥ

Yld2000-2d
(real anisotropic 

material)

4. Anisotropic hardening – HAH model
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Reverse loading
• Independent identification of coefficients (Bauschingerand other effects)

Cross-loading
• Independent identification of coefficients (latent hardening and other effects)

• Same identification procedure as that of isotropic hardening (           ,          )	ω s( )	σ R ε( )

Proportional loading
• HAH reduces to isotropic hardening response (anisotropic yield function)

4. Anisotropic hardening – HAH model

Coefficient identification
• Sequential
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4. Anisotropic hardening – HAH model

Choi et al., 2017

Forward and reverse simple shear 
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Fu et al.  (2017)

4. Anisotropic hardening – HAH model

Forward and reverse simple shear (TRIP 780 steel) 
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4. Anisotropic hardening – HAH model

Fu et al.  (2017)

Forward and reverse simple shear cycles (DP 600 & TWIP 980 steels) 
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Plasticity remains a topic with many challenges

• Anisotropic material under isotropic and anisotropic hardening 

• Numerical implementation

• Identification with complex evolution equations

• Applicability for industrial problems

5. Final remarks




