International Seminar on Metal Plasticity Rome, Italy, June19, 2017 Organizers: Marco Rossi, Sam Coppieters

THEORETICAL MODELING OF PLASTICITY

Frédéric Barlat

Graduate Institute of Ferrous Technology Pohang University of Science and Technology, Republic of Korea

International Seminar on Metal Plasticity June 19, 2017

Outline

- 1. Introduction
- 2. Plasticity modeling
- 3. Isotropic hardening
- 4. Anisotropic hardening
- 5. Final remarks

1. Introduction — Deformation mechanisms

Plastic behavior in metals 1. Dislocation glide (slip) Slip plane Hull, 1983 S.D. 011 2 μm **B**=111 112 110 1 um

Rauch et al., 2011

2. Other mechanisms

Continuum scale plasticity

Crystal plasticity (slip, twinning and homogenization schemes)

Dislocation dynamics (dislocation network with interaction rules)

Multiphase material modeling (unit cells)

Atomistic (lattice with interatomic potentials) and ab-initio

This presentation is about continuum scale plasticity

2. Plasticity modeling –

Approaches

Variables

- External variables (elastic strain, plastic strain, strain rate, temperature)
- Thermodynamically conjugate variables through the expression of the free energy (stress, entropy)
- State variables assumed to represent deformation mechanisms (explicitly or implicitly)

Context of this presentation

- Rate and temperature-independent behavior (mostly)
- Isotropic hardening (applicable for monotonic loading)
- Anisotropic hardening (applicable for non-monotonic loading)

2. Material modeling – Approaches

Total strain increment

Elastic–plastic decomposition

 $d\boldsymbol{\varepsilon}^{tot} = d\boldsymbol{\varepsilon}^{ela} + d\boldsymbol{\varepsilon}^{pla}$ $(d\boldsymbol{\varepsilon}^{pla} = d\boldsymbol{\varepsilon}$ in this presentation)

Plasticity concepts

- Yield condition (applied stress equal to yield stress in uniaxial tension)
- Hardening model (stress-strain curve in uniaxial tension)
- Flow rule $d\epsilon (d\epsilon_{trans} = -1/2 d\epsilon_{long}$ for isotropic material in uniaxial tension)

2. Material modeling –

Yield condition

$$\Phi(\mathbf{\sigma}) = 0$$
 for instance $\bar{\sigma}(\sigma_{ij}) - \sigma_y = 0$

- Effective stress and yield stress
- Yield condition defines yield surface

Hardening rule

• Same yield condition but with evolving state variables (microstructure)

 $\Phi(\mathbf{\sigma}, \Theta, x) = 0$ for instance $\overline{\sigma}(\mathbf{\sigma}) - \sigma_R(\Theta, x) = 0$

• x represents (scalar or tensorial) state variables

2. Material modeling – Plasticity concepts

Flow rule

- Associated or non-associated. For metal, associated flow rule is consistent with plastic deformation mechanisms
- Argument based on crystal plasticity by Bishop and Hill (1951) general approach (not restricted to specific boundary conditions)

$$d\mathbf{\varepsilon} = d\lambda \frac{\partial \Phi}{\partial \sigma}$$

- Work-equivalent effective strain $\overline{\sigma}d\overline{\varepsilon} = \sigma : d\varepsilon$ defines a possible state variable (accumulated deformation or accumulated dislocations)
- Associated flow rule reduces to $d\mathbf{\varepsilon} = d\bar{\varepsilon} \frac{\partial \bar{\sigma}}{\partial \sigma}$

Choice of the yield condition fully defines the material behavior

Isotropic yield conditions

 $\bar{\sigma}(\boldsymbol{\sigma}) - \sigma_R(\bar{\varepsilon}) = 0$

• The effective stress is based on invariants such as von-Mises, Tresca, Hershey, etc.

$$\bar{\sigma} = \left\{ \frac{|\sigma_1 - \sigma_2|^a + |\sigma_2 - \sigma_3|^a + |\sigma_3 - \sigma_1|^a}{2} \right\}^{1/a} - \sigma_R(\bar{\varepsilon}) = 0 \quad \text{(Hershey, 1954)}$$

- Principal stresses are invariants
- Non-quadratic and convex yield function
- Reduces to Tresca or von-Mises for specific values of \boldsymbol{a}
- Identification of $\sigma_R(\bar{\varepsilon})$, e.g., using least square approximation. Issue for extrapolation

Anisotropic yield conditions

• Same yield condition as for isotropic case but stress components must be expressed in material symmetry axes (eg., RD, TD, ND)

$$\bar{\sigma}(\boldsymbol{\sigma}) - \sigma_R(\bar{\varepsilon}) = 0$$

Effective stress based on Hill (1948)

Plane stress case

$$\bar{\sigma} = \left\{ F \left(\sigma_{yy} - \sigma_{zz} \right)^2 + G \left(\sigma_{zz} - \sigma_{xx} \right)^2 + H \left(\sigma_{xx} - \sigma_{yy} \right)^2 + 2N \sigma_{xy}^2 \right\}^{1/2} = \sigma_R(\bar{\varepsilon})$$

- Reduces to von Mises for specific values of F, G, H and N
- Issue for identification F, G, H and N: Based on flow stresses or *r* -value in uniaxial tension?

Hill (1948) plane stress

Hill (1948) plane stress

Hill (1948) limitations

- Cannot, in general, model uniaxial tension properly
- Use average behavior (still inaccurate) or non-associated flow rule with strain potential (not based on the physics of slip)

Non-quadratic yield functions and isotropic hardening

• Note that Hill (1948) cannot be generalized directly, i.e.,

$$\bar{\sigma} = \left\{ F(\sigma_{yy} - \sigma_{zz})^a + G(\sigma_{zz} - \sigma_{xx})^a + H(\sigma_{xx} - \sigma_{yy})^a + 2N\sigma_{xy}^a \right\}^{1/a} = \sigma_R(\bar{\varepsilon})$$

 This formulation does not work because it is component-based, not invariant based

Non-quadratic yield functions

- Linear stress transformation approach
- For instance, with two transformations $\sigma'^{(t)} = \mathbf{C}^{(t)} : \sigma' \ (t = 1,2)$
- Plane stress case: Yld2000-2d

$$\bar{\sigma} = \left\{ \frac{\left| \tilde{\sigma}_{1}^{\prime(1)} - \tilde{\sigma}_{2}^{\prime(1)} \right|^{a} + \left| 2\tilde{\sigma}_{2}^{\prime(2)} + \tilde{\sigma}_{1}^{\prime(2)} \right|^{a} + \left| 2\tilde{\sigma}_{1}^{\prime(2)} + \tilde{\sigma}_{2}^{\prime(2)} \right|^{a}}{2} \right\}^{1/a} = \sigma_{R}(\bar{\varepsilon})$$

- Total of eight anisotropy coefficients in $\mathbf{C}^{(1)}$ and $\mathbf{C}^{(2)}$
- Reduces to isotropic Hershey (1954) when $C^{(1)}$ and $C^{(2)}$ are the identity

Non-quadratic yield functions

General stress state Yld2004-18p

$$\bar{\sigma} = \left\{ \frac{1}{4} \sum_{p,q}^{1,3} \left| \tilde{\sigma}_p^{\prime(1)} - \tilde{\sigma}_q^{\prime(2)} \right|^a \right\}^{1/a} = \sigma_R(\bar{\varepsilon})$$

- Total of 16 independent anisotropy coefficients in $\mathbf{C}^{(1)}$ and $\mathbf{C}^{(2)}$
- Reduces to isotropic Hershey (1954) when $C^{(1)}$ and $C^{(2)}$ are the identity
- Advantage of linear transformations compared to other approaches for plastic anisotropy: Preserve convexity of the isotropic function

Non-quadratic yield functions

Non-quadratic yield functions

Non-quadratic yield functions

Strength differential (SD) effect

• Isotropic yield function (Cazacu et al., 2006)

$$\bar{\sigma} = \left\{ \frac{\left| \left| \sigma_{1}' \right| - k \sigma_{1}' \right|^{a} + \left| \left| \sigma_{2}' \right| - k \sigma_{2}' \right|^{a} + \left| \left| \sigma_{3}' \right| - k \sigma_{3}' \right|^{a} \right\}^{1/a}}{K} - \sigma_{R}(\bar{\varepsilon}) = 0$$

- Constant coefficient K
- Compression to tension ratio $\frac{\sigma_c}{\sigma_t} = \left\{ \frac{2^a (1-k)^a + 2(1+k)^a}{2^a (1+k)^a + 2(1-k)^a} \right\}^{1/a}$
- Anisotropic yield function using linear transformation

Twinning yield surfaces

3. Isotropic hardening –

Validation

Biaxial compression testing

3. Isotropic hardening –

Validation

Biaxial tension testing ISO 16842: 2014 Metallic materials -Sheet and strip -Biaxial tensile testing method using a cruciform test piece **Tubular specimens** RD Clamping area Strain gauge 0.66 Slit width: 0.2 type I type II 260 7.5 60 $\rightarrow \chi$ Φ54 170 60 (inner) 230 21 60 260 **Cruciform specimens**

Kuwabara and Sugawara, 2013

3. Isotropic hardening –

Validation

4. Anisotropic hardening

Approaches

- Differential hardening
- Kinematic hardening
- Combined kinematic isotropic hardening
- Combined kinematic hardening and distortional plasticity
- Distortional plasticity only

Differential hardening

- Hill and Hutchinson (1992)
- Can be modelled by varying the coefficients of an isotropic hardening model
- Relatively simple but based on one given strain path only

Example based on experimental data

Example based on crystal plasticity of Zr

Example based on crystal plasticity of Zr (Taylor impact test application)

Graduate Institute of Ferrous Technology Pohang University of Science and Technology - 30 - POSTECH

Linear kinematic hardening

$$\Phi(\mathbf{\sigma}, x) = \bar{\sigma}(\mathbf{\sigma} - \mathbf{X}) - \sigma_y = 0 \quad (\text{Prager, 1949})$$

• One state variable: Back-stress $\mathbf{X} = \mathbf{x}_1$ $\dot{\mathbf{X}} = C\mathbf{D}$

Non-linear kinematic hardening

• Chaboche et al. (1979)

$$\overline{\sigma}(\mathbf{s}, \mathbf{X}) = \mathbf{Y} + \mathbf{R}(\overline{\epsilon})$$

Back-stress
Yield stress

Evolution equations

$$\dot{\mathbf{X}} = C\mathbf{D} - \gamma \mathbf{X}\dot{\overline{\varepsilon}}$$

 $\dot{R} = \frac{dR}{d\,\overline{\varepsilon}}\,\dot{\overline{\varepsilon}}$

• Hu and Teodosiu (1995)

Translating surfaces

Two surfaces (Dafalias and Popov, 1975) Multiple nested surfaces (Mroz, 1967)

Two surfaces

4. Anisotropic hardening – Validation

Biaxial compression testing – Stacked sheet specimens

Tozawa, 1978

Yield loci at ε = 0.2% for steel (S10C) prestretched by various strains in tension

> $\varepsilon_{pre} = 0.05$ $\varepsilon_{pre} = 0.10$ $\varepsilon_{pre} = 0.20$

> > **Tozawa**, **1978**

Validation

Yield loci at ε = 0.2% for steel (S10C) prestretched by various strains in tension

> $\varepsilon_{pre} = 0.05$ $\varepsilon_{pre} = 0.10$ $\varepsilon_{pre} = 0.20$

4. Anisotropic hardening – Distortional plasticity only

Homogeneous anisotropic hardening (HAH)

• f_1^q , f_2^q describe the amount of distortion

-
$$ar{\omega}(\mathbf{s})$$
 replaced by $ar{\omega}_{_{CL}}(\mathbf{s})$ for cross-loading & latent effects

Microstructure deviator

- Tensorial state variable with evolution rule
- Mimics delays in formation / rearrangement of dislocation structures
- Provides a reference for distortion

ĥ

Reverse loading

- Anisotropic material 1
- Loading sequences
 - (I) RD tension
 - (II) RD compression
- Effects captured
 - Distortional hardening
 - Bauschingereffect

• Note

- Half and half

Cross-loading

- Anisotropic material 2
- Loading sequence
 - (I) RD tension
 - (II) Near TD plane strain tension
- Effects captured
 - Distortional hardening
 - Bauschingereffect
 - Cross-loading contraction
 - Latent hardening
- Note
 - Proportional loading (proof)

Coefficient identification

Sequential

Proportional loading

- HAH reduces to isotropic hardening response (anisotropic yield function)
- Same identification procedure as that of isotropic hardening ($\sigma_{_R}(\overline{arepsilon})$, $\overline{\omega}(\mathbf{s})$)

Reverse loading

Independent identification of coefficients (Bauschinger and other effects)

Cross-loading

Independent identification of coefficients (latent hardening and other effects)

Forward and reverse simple shear

Forward and reverse simple shear (TRIP 780 steel)

Forward and reverse simple shear cycles (DP 600 & TWIP 980 steels)

Graduate Institute of Ferrous Technology Pohang University of Science and Technology

- 44 - POSTECH

5. Final remarks

Plasticity remains a topic with many challenges

- Anisotropic material under isotropic and anisotropic hardening
- Numerical implementation
- Identification with complex evolution equations
- Applicability for industrial problems

