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Information continuum 
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What is an acceptable model? 

• Hume [1748] suggested that observational evidence will                       
never support any hypothesis about the unobserved. 

 

• More pragmatic approach required... 

 

• Popper [1959] proposed that observational evidence cannot prove a 
hypothesis correct, but it can demonstrate its inappropriateness or 
falsity 

 

• Implies that there is always a possibility of making a                         
mistake when accepting [or rejecting] a hypothesis 
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Hume, D., 1748 [1999], An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University Press, Oxford, edited by T.L. 
Beauchamp. 
Popper, K., 1959, The logic of scientific discovery, Hutchinson, London. 



Making mistakes 

• Rudner [1953] argued that the decision to accept or reject a hypothesis 
depends on the strength of the evidence 

– And, our judgement on the strength of the evidence depends on the 
importance of making a mistake in accepting or rejecting a hypothesis 

 

• For engineering models 

– Importance of making a mistake will be measured in economic cost and loss of 
life or injury arising from an engineering failure 

 

• Strength of evidence required to accept a computational solid mechanics 
model could be very high in some cases 

– e.g. design of an aircraft or nuclear power plant 

– So, need comprehensive validation of model 

5 Rudner, R., 1953, The scientist qua scientist makes value judgements, Philosophy of Science, 20:1-6. 



ASME V&V Guide 

• Verification 

– ‘The process of determining that a 
computational model accurately 
represents the underlying 
mathematical model and its solution.’ 

 

• Validation 
– ‘The process of determining the 

degree to which a model is an accurate 
representation of the real world from 
the perspective of the intended uses 
of the model.’ 

• No methodology provided 

ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics, American Society of Mech. Engineers, New York, 2006. 



Experimental mechanics 

• Validity of computational models is analogous to scientific hypotheses 

– Recognise that observational [experimental] data cannot prove its validity 

– Increasing body of evidence can increase degree of belief in the model1 

 

• obvious that current practices, based on the strain value at a small 
number of locations, are inadequate 

 

• until now, obviousness over-powered by cost of experimental data  

– alleviated by new technologies e.g  DIC, DVC, ESPI & TSA 

 and, lack of methods for quantitative comparisons of full-field data 

– Different  orientation,  coordinate system, scale, pitch of data  

– Resolved by use of image decomposition2 

• Reduces dimensionality of data & is invariant to rotation, scale & translation 
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1. Audi, R., 2011, Epistemology: a contemporary introduction to theory of knowledge, 3rd ed., Routledge, New York. 
2. Wang, W., Mottershead, J.E., Sebastian, C.M., Patterson, E.A., 2011, Shape features and finite element model updating from full-field strain data, 
Int. J. Solids Struct. 48(11-12), 2011, 1644-1657. 



Idealised image decomposition 
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Patki AS & Patterson EA, Decomposing strain maps using Fourier-Zernike shape descriptors, Experimental Mechanics, 52(8):1137-1149, 2012. 



Massive datasets: >105 values 

Composite  
tie bar 

3D digital image 
correlation 

FEA model 

Conway, A.R., Xiao, X., 2010, Implementing a Finite Element Module for Fatigue 
Damage Modelling in Fiber Reinforced Composite Materials, Proc. 25th Tech. 
Conf. tAm. Soc. Composites, Dayton, Ohio, (2):1173-1783. 



Validation procedure 

Original Experimental Strain Map
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Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47. 
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Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47. 



Impact on composite bonnet liner 
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Bonnet liner painted with speckle pattern for 3D DIC 

Finite element model of bonnet liner Bonnet liner made with short fibres in polyamide matrix 



High velocity, low energy impact 
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About 0.5 milliseconds before impact by 50mm diameter, 125g projectile at 
70m/s (=300J). 



Dynamic analysis of bonnet 
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Displacements 40 msec after impact 

from FEA 

from DIC 
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed 
Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 



Comparison for validation of model 
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed 
Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 



Experimentalists: “How do I implement all this?” 

• CEN Workshop Agreement 16799: 2014    

 Validation of computational solid mechanics models 

 

Modellers: “Do we have to do all of this?” 

• Well, yes and no 

• No, for product designs that evolve relatively slowly 

– models with epistemic values are more likely reliable 

– epistemic values include: simplicity, explanatory power, 
internal consistency, external consistency 

• Yes, for radical design innovation 

– Models unlikely to have epistemic properties 

– Comprehensive validation required to support credibility 

• Yes, for high risk applications 

 

 

Consequences/Opportunities? 

Biddle, J., & Winsberg, E., 2010, Value judgments and the estimation of uncertainty in climate modeling, in New Waves in Philosophy of Science 
edited by P.D. Magnus & J. Busch, Palgrave MacMillan, Basingstoke. 
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Information continuum 
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Strain fields in damaged laminates 
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Virgin & impact damaged 
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240x60mm laminates 

Time of 
flight 
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with binary 
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DIC strain fields 
in tension 

Euclidean distance between DIC strain fields in 
damaged and virgin specimen is excellent 
indicator of impact energy & damage 

Patki AS & Patterson EA, Damage assessment of fibre reinforced composites using shape descriptors, J. Strain Anal.  47(4):244-253, 2012 

Image 
decomposition 



Manufacturing Quality Assurance 
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Ultrasound evaluation of fibre waviness in CFRP Residual strength prediction using DIC 
evaluation of fibre waviness 

Strain[DIC]-based evaluation of fibre waviness 

Decompose & 
compare with 
perfect material  



Concluding remarks 

• Opportunity to unite design validation, manufacturing                 quality 
assurance & in-service inspection in digital twins 
 

• Model validation is about quantifying the strength of evidence  

– Uncertainty quantification is an essential step in validation 

– Aim to use ‘observational evidence’ of maximum quantity & quality 
 

• Manufacturing quality assurance viable in composites 

– Strain data indicate likely structural performance relative to design model 
 

• In-service inspection viable for composites laminates 

– Strain data provide input to more reliable residual life assessments 
 

• All enabled by proper orthogonal decomposition 

– low-dimensional descriptions that capture the features of interest in large 
quantities of high dimensional data  

20 Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016 
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• Relative error for each data pair, 

Current work: frequentist approch 

8 

64% probability of 

model being valid 

when simulating specific 

parameter & conditions 

given 9% relative uncertainty 

in experimental data  
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Dvurecenska K, Patterson EA, Patelli E & Graham SJ, Preliminary evaluation of validation metrics for computational mechanics models, Proc. 10th 
Int. Conf. on Advances in Exptl. Mech., September 1-3, 2015. 


