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What is an acceptable model? 2 LIVERPOOL

Hume [1748] suggested that observational evidence will
never support any hypothesis about the unobserved.

e More pragmatic approach required...

e Popper [1959] proposed that observational evidence cannot prove a
hypothesis correct, but it can demonstrate its inappropriateness or
falsity

e Implies that there is always a possibility of making a
mistake when accepting [or rejecting] a hypothesis

y
/e
Hume, D., 1748 [1999], An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University Press, Oxford, edited by T.L.

Beauchamp.
Popper, K., 1959, The logic of scientific discovery, Hutchinson, London. 4
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Making mistakes 2 LIVERPOOL

e Rudner [1953] argued that the decision to accept or reject a hypothesis
depends on the strength of the evidence

— And, our judgement on the strength of the evidence depends on the
importance of making a mistake in accepting or rejecting a hypothesis

e For engineering models

— Importance of making a mistake will be measured in economic cost and loss of
life or injury arising from an engineering failure

e Strength of evidence required to accept a computational solid mechanics
model could be very high in some cases

— e.g. design of an aircraft or nuclear power plant
— So, need comprehensive validation of model

Rudner, R., 1953, The scientist qua scientist makes value judgements, Philosophy of Science, 20:1-6.
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e Verification

— ‘The process of determining that a
computational model accurately
represents the underlying
mathematical model and its solution.’

ASME V&V 10-2006

Guide for
Verification and
Validation in

Computational
Solid Mechanics

e Validation

— ‘The process of determining the
degree to which a model is an accurate
representation of the real world from I
the perspective of the intended uses
of the model.’ ==

e No methodology provided

ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics, American Society of Mech. Engineers, New York, 2006.
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Experimental mechanics

e Validity of computational models is analogous to scientific hypotheses
— Recognise that observational [experimental] data cannot prove its validity
— Increasing body of evidence can increase degree of belief in the model*

e obvious that current practices, based on the strain value at a small
number of locations, are inadequate

e until now, obviousness over-powered by cost of experimental data
— alleviated by new technologies e.g DIC, DVC, ESPI & TSA
and, lack of methods for quantitative comparisons of full-field data

— Different orientation, coordinate system, scale, pitch of data Z=
— Resolved by use of image decomposition? %\
Z

e Reduces dimensionality of data & is invariant to rotation, scale & translation

1. Audi, R., 2011, Epistemology: a contemporary introduction to theory of knowledge, 3™ ed., Routledge, New York.
2. Wang, W., Mottershead, J.E., Sebastian, C.M., Patterson, E.A., 2011, Shape features and finite element model updating from full-field strain data,
Int. J. Solids Struct. 48(11-12), 2011, 1644-1657.
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Idealised image decomposition 2 LIVERPOOL

S1
S2
T S=
Image of a three- S
dimensional g
shape Feature vector consisting

of shape descriptors

-

Matrix of grey-scale values, | (l , J) Reconstruction

Patki AS & Patterson EA, Decomposing strain maps using Fourier-Zernike shape descriptors, Experimental Mechanics, 52(8):1137-1149, 2012.
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Massive datasets: >10° values LIVERPOOL
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Validation procedure

Original Experimental Strain Map

5 10 15 20
Matlab corrcoef: 1.00
Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47.
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Original Simulation Strain Map
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Validation procedure

Original Experimental Strain Map
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Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47.
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Impact on composite bonnet liner
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High velocity, low energy impact 2 LIVERPOOL
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About 0.5 milliseconds before impact by 50mm diameter, 125g projectile at
70m/s (=300)).




Dynamic analysis of bonnet
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Displacements 40 msec after impact
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed

Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223.
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Comparison for validation of model 2 LIVERPOOL
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CWA 16799

AGREEMENT

Experimentalists: “How do | implement all this?”
e CEN Workshop Agreement 16799: 2014
Validation of computational solid mechanics models

Modellers: “Do we have to do all of this?”

e Well, yes and no

* No, for product designs that evolve relatively slowly
— models with epistemic values are more likely reliable

— epistemic values include: simplicity, explanatory power,
internal consistency, external consistency

science.htm

e Yes, for radical design innovation

ge/the

— Models unlikely to have epistemic properties

www.globalchange.umich.edu/g
lobalchange2/current/lectures/c

limate chan

— Comprehensive validation required to support credibility
e Yes, for high risk applications

Biddle, J., & Winsberg, E., 2010, Value judgments and the estimation of uncertainty in climate modeling, in New Waves in Philosophy of Science
edited by P.D. Magnus & J. Busch, Palgrave MacMillan, Basingstoke.
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Strain fields in damaged laminates
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damaged and virgin specimen is excellent
indicator of impact energy & damage
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Patki AS & Patterson EA, Damage assessment of fibre reinforced composites using shape descriptors, J. Strain Anal. 47(4):244-253, 2012
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Manufacturing Quality Assurance % LIVERPOOL
Ultrasound evaluation of fibre waviness in CFRP Residual strength prediction using DIC
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Concluding remarks

In-service
Inspection

Manufacturing
S Quality Assurance

%
o

Design Model
Validation

Strain Data

e Opportunity to unite design validation, manufacturing
assurance & in-service inspection in digital twins —

(%)
o

Life-cycle
Prognosis

e Model validation is about quantifying the strength of evidence
— Uncertainty quantification is an essential step in validation
— Aim to use ‘observational evidence’ of maximum quantity & quality

e Manufacturing quality assurance viable in composites
— Strain data indicate likely structural performance relative to design model

e In-service inspection viable for composites laminates

— Strain data provide input to more reliable residual life assessments

e All enabled by proper orthogonal decomposition

— low-dimensional descriptions that capture the features of interest in large
quantities of high dimensional data

Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016 20
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Current work: frequentist approch % LIVERPOOL
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