

Impact on decision-making of quantified uncertainty for DIC measurements

Eann A. Patterson

A.A. Griffith Chair of Structural Materials & Mechanics School of Engineering, University of Liverpool
& Senior Visiting Fellow, National Nuclear Laboratory (eann.patterson@liverpool.ac.uk)

European Commission projects

Standardisation Project for Optical Techniques for Strain measurement

Advanced Dynamic Validation by Integrating Simulation & Experimentation VAlidation of Numerical Engineering Simulations: Standardisation Actions

2013-2014

Matrix Optimisation for Testing by Interaction of Virtual And Test Environments

Information continuum

Patterson E.A., Feligiotti, M. & Hack, E., 2013, On the integration of validation, quality assurance and non-destructive evaluation, *J. Strain Analysis*, 48(1):48-59.

What is an acceptable model?

- Hume [1748] suggested that observational evidence will never support any hypothesis about the unobserved.
- More pragmatic approach required...
- Popper [1959] proposed that observational evidence cannot prove a hypothesis correct, but it can demonstrate its inappropriateness or falsity
- Implies that there is always a possibility of making a mistake when accepting [or rejecting] a hypothesis

Hume, D., 1748 [1999], An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University Press, Oxford, edited by T.L. Beauchamp.

Popper, K., 1959, *The logic of scientific discovery*, Hutchinson, London.

Making mistakes

• Rudner [1953] argued that the decision to accept or reject a hypothesis depends on the strength of the evidence

 And, our judgement on the strength of the evidence depends on the importance of making a mistake in accepting or rejecting a hypothesis

• For engineering models

 Importance of making a mistake will be measured in economic cost and loss of life or injury arising from an engineering failure

 Strength of evidence required to accept a computational solid mechanics model could be very high in some cases

- e.g. design of an aircraft or nuclear power plant
- So, need comprehensive validation of model

Rudner, R., 1953, The scientist qua scientist makes value judgements, Philosophy of Science, 20:1-6.

ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics, American Society of Mech. Engineers, New York, 2006.

ASME V&V Guide

• Verification

'The process of determining that a computational model accurately represents the underlying mathematical model and its solution.'

• Validation

- 'The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.'
- No methodology provided

Experimental mechanics

• Validity of computational models is analogous to scientific hypotheses

- Recognise that observational [experimental] data cannot prove its validity
- Increasing body of evidence can increase degree of belief in the model¹
- obvious that current practices, based on the strain value at a small number of locations, are inadequate
- until now, obviousness over-powered by cost of experimental data
 - alleviated by new technologies e.g DIC, DVC, ESPI & TSA

and, lack of methods for quantitative comparisons of full-field data

- Different orientation, coordinate system, scale, pitch of data
- Resolved by use of image decomposition²
 - Reduces dimensionality of data & is invariant to rotation, scale & translation

 Audi, R., 2011, *Epistemology: a contemporary introduction to theory of knowledge*, 3rd ed., Routledge, New York.
 Wang, W., Mottershead, J.E., Sebastian, C.M., Patterson, E.A., 2011, Shape features and finite element model updating from full-field strain data, *Int. J. Solids Struct*. 48(11-12), 2011, 1644-1657.

Idealised image decomposition

Image of a threedimensional shape

Feature vector consisting of shape descriptors

Reconstruction

Patki AS & Patterson EA, Decomposing strain maps using Fourier-Zernike shape descriptors, *Experimental Mechanics*, 52(8):1137-1149, 2012.

Massive datasets: >10⁵ values

Validation procedure

Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47.

Validation procedure

Sebastian C, Hack E, Patterson EA, 2013, An approach to validation of computational solid mechanics models for strain analysis, J. Strain Analysis, 48(1):36-47.

Impact on composite bonnet liner

Bonnet liner made with short fibres in polyamide matrix

Finite element model of bonnet liner

High velocity, low energy impact

Dynamic analysis of bonnet

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, *J. Strain Analysis*, 49(4): 212-223.

Comparison for validation of model

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223.

UNIVERSITY OF

LIVERPO

.

Consequences/Opportunities?

Experimentalists: "How do I implement all this?"

• CEN Workshop Agreement 16799: 2014 Validation of computational solid mechanics models

Modellers: "Do we have to do all of this?"

- Well, yes and no
- No, for product designs that evolve relatively slowly
 - models with epistemic values are more likely reliable
 - epistemic values include: simplicity, explanatory power, internal consistency, external consistency
- Yes, for radical design innovation
 - Models unlikely to have epistemic properties
 - Comprehensive validation required to support credibility

• Yes, for high risk applications

Biddle, J., & Winsberg, E., 2010, Value judgments and the estimation of uncertainty in climate modeling, in *New Waves in Philosophy of Science* edited by P.D. Magnus & J. Busch, Palgrave MacMillan, Basingstoke.

	CWA 16799
WORKSHOP	September 2014
AGREEMENT	
IC8 35.240.50	
	English version
Validatio	on of computational solid mechanics models
This CEN Workshop Agreement has b which is indicated in the foreword of thi	een draffied and approved by a Workshop of representatives of interested parties, the constitution of a Workshop Agreement.
The formal process followed by the Wo Members of CEN but neither the Natio Activities content of this CEN Worksho	vikahop in the development of this Wookahop Agreement has been endorsed by the National as Members of CEN nor the CEN-CENELEC Management Centre can be held ecountable for the p Agreement or possible conflicts with standards or legislation.
This CEN Workshop Agreement can in	no way be held as being an official standard developed by CEN and its Members.
this CEN Workshop Agreement is put CEN members are the national stands liviand, Former Yugoslav Republic of Losenbourg, Malta, Netherlands, Norv longdow.	iloy available as a melenence document from the CEN Membern National Standard Sociae. Idebodies of Alastie, Beiglann, Dulgaris, Chaelis, Cyprae, Caech Republic, Demrark, Estoria, Macadola, Hanco, Gamanoy, Greesa, Kingary, Isaland, Saeka, Hay, Lako, Lako, Lako, ay, Foland, Pontugal, Romana, Stowika, Bloweika, Spain, Sweder, Switzerland, Turkwy and United
	COMPTE REMOVERS DE NUMALISATION EUROPÄISCHES EOMITEE PËR NORMUNG
CEN	CENELEC Management Centre: Avenue Mamis 17, 8-1000 Brassels
© 2014 CEN All rights of separate	don'n any form and by any means reserved workheide for CEN rational Members.
	Ref. No.: CWA 15759 2014 E

www.globalchange.umich.edu/g obalchange2/current/lectures/c imate_change/the_science.htm

Information continuum

Patterson E.A., Feligiotti, M. & Hack, E., 2013, On the integration of validation, quality assurance and non-destructive evaluation, *J. Strain Analysis*, 48(1):48-59.

Strain fields in damaged laminates

Patki AS & Patterson EA, Damage assessment of fibre reinforced composites using shape descriptors, J. Strain Anal. 47(4):244-253, 2012

LIVERSITY OF

Manufacturing Quality Assurance

Concluding remarks

- Opportunity to unite design validation, manufacturing assurance & in-service inspection in digital twins
- Model validation is about quantifying the strength of evidence
 - Uncertainty quantification is an essential step in validation
 - Aim to use 'observational evidence' of maximum quantity & quality
- Manufacturing quality assurance viable in composites
 - Strain data indicate likely structural performance relative to design model
- In-service inspection viable for composites laminates
 - Strain data provide input to more reliable residual life assessments
- All enabled by proper orthogonal decomposition
 - low-dimensional descriptions that capture the features of interest in large quantities of high dimensional data

Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016 20

Current work: frequentist approch

• Relative error for each data pair, $e_i = \left| \frac{S_{M,i} - S_{E,i}}{max |S_{E,i}|} \right|$

Dvurecenska K, Patterson EA, Patelli E & Graham SJ, Preliminary evaluation of validation metrics for computational mechanics models, *Proc. 10th Int. Conf. on Advances in Exptl. Mech.*, September 1-3, 2015.