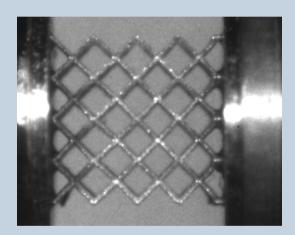
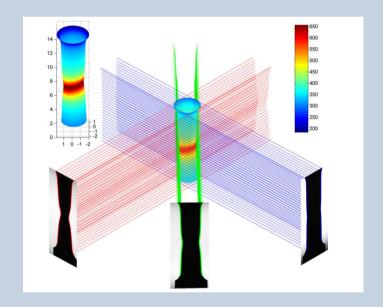


Overview of current status and showcase activities

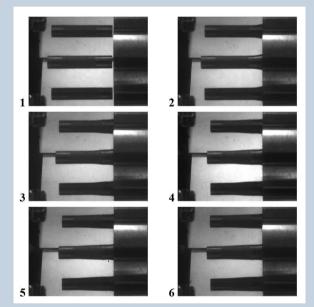

Dr Clive Siviour

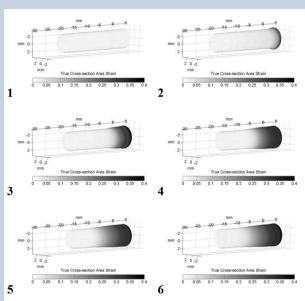
Introduction

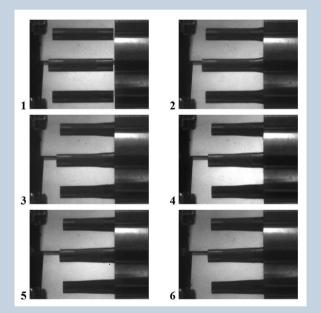
- Overview of our uses and requirements for high speed photography.
 - Aims
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements
- Overview of available cameras, not focussing on any specific camera, but general trends as perceived by the operator.
- Thoughts for the future.

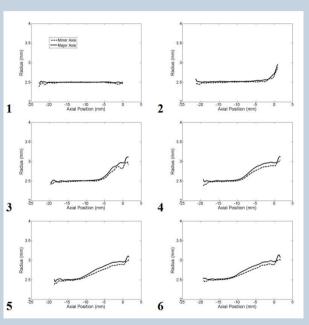


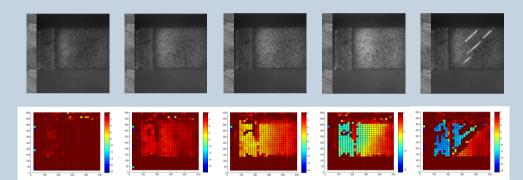
- Aims of High Speed Photography in Materials Characterisation
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements




- Aims of High Speed Photography in Materials Characterisation
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements


- Aims of High Speed Photography in Materials Characterisation
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements




- Aims of High Speed Photography in Materials Characterisation
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements

- Aims of High Speed Photography in Materials Characterisation
 - Visualise Events
 - Reconstruct Specimens
 - Perform Measurements

Visualise Events: Speeds

Governing Speeds / Timescales

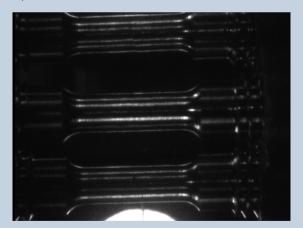
 Crack Propagation 	5 mm μs ⁻¹	5 Mfps
 Stress Wave Propagation 	1-10 mm μs ⁻¹	1-10 Mfps
 Taylor Impact 	20 μs	500 000 fps
 Hopkinson bar experiment 		
Brittle Material	~20 µs	500 000 fps
– Ductile Material	~200 μs	50 000 fps
 Ballistic Experiment 	1 ms	10 000- 100 000 fps

Visualise Events: Speeds

Taylor Impact of Foam: A slow event

Visualise Events: Lengthscales

Approximate specimen sizes


Taylor Impact
 25 mm long; 5 mm diameter

Hopkinson bar
 5-10 mm long; 5-10 mm diameter

Ballistic Impact
 Zone of interest c.a. 20 mm diameter

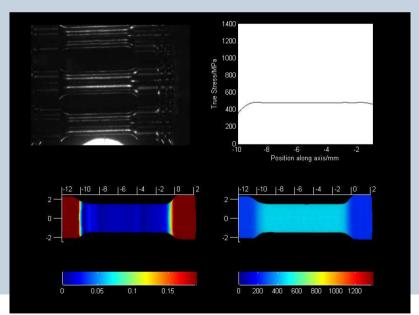
- For tension tests, letterbox format is appropriate;
- For compression tests / reconstruction, letterbox less useful

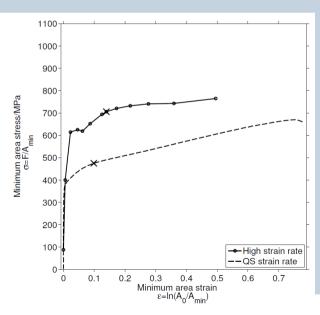
Visualise Events: Lengthscales

Approximate specimen sizes

Taylor Impact25 mm long; 5 mm diameter

Hopkinson bar
 5-10 mm long; 5-10 mm diameter


Ballistic Impact
 Zone of interest c.a. 20 mm diameter


- For tension tests, letterbox format is appropriate;
- For compression tests / reconstruction, letterbox less useful
- However
 - Increasing interest in microstructural effects: shorter lengthscales
 - Larger magnifications
 - Shorter timescales
 - Need lots of light!
 - E.g. ability to resolve features of order 10 μm desirable.

Reconstruct Geometry

- For example, in tensile tests or Taylor Impact.
 - Geometry Reconstruction allows true stress-strain response
- For our applications, especially tensile test, current limit is number of photos, more than speed or resolution.

Performing Measurements

- DIC can be used to obtain displacements with sub-pixel displacement resolution.
 - Commercially available codes claim 1/100 to 1/1000 pixels.
 - Achievable with current high speed imaging?
 - E.g. Fabrice talk this morning: 0.2 pixel, improved by smoothing
- Resolution limited by noise, both between sensors and in a single sensor between images:
 - image intensifier, vibration from moving parts, pixel intensity variation, etc.
- Also distortion (e.g. from lens), but this can be corrected by appropriate calibration.
- Other limits: e.g. difficulty of producing appropriate high quality speckle patterns on many specimens; lighting issues.

Performing Measurements

- Good data important, because we want to differentiate data:
 - With respect to position for strain.
 - With respect to time (twice!) for velocity and acceleration.
 - Again, often limited by number of images.

Imaging systems and capabilities (very approximate!)

- High speed video
 - High quality images (both resolution and number of pixels).
 - Generally easy to use and transport.
 - Large number of frames (measured in seconds, not frames!)
 - Resolution and Speed trade off, e.g.
 - 10 000 fps at 640 x 480
 - 100 000 fps at 128 x 128
 - 500 000 fps at 32 x 32
 - Post-triggering possible.
 - Low Cost!

Imaging systems and capabilities (very approximate!)

- 'Intermediate'
 - Up to 100 frames at full resolution up to 1 M fps
 - Post trigger possible
- Ultra high speed
 - Speeds of 200 M fps
 - Typically use image intensifiers: 1 M pixel sensor but lower resolution
 - Range from 8-32 frames.
 - No post triggering: although you can't post-trigger your flash either!
 - More costly.

Imaging systems and capabilities (very approximate!)

Streak

- Streak offers many advantages for uniaxial characterisation.
- Traditionally streak systems are very fast, e.g ps / mm, and expensive.
- Digital system producing up to 520 000 lps is available at reasonable cost.

Infra Red

- Speeds of 32000 fps in commercial systems.
- Higher speeds are less sensitive (no infra-red flash).
- In house ultra high speed system has also been built (8x8 pixels at 1 M fps).

X-ray

Flash X-ray systems available, but single shot and lower resolution.

Limitations as I see them

- Speed vs resolution vs # frames vs noise
 - My ideal camera:
 - 10 Mfps
 - Single detector, non-intensified, no fibre optics
 - 1000 * 2000 pixels minimum
 - a range of triggering options
 - My ideal flash
 - Bright!
 - Long duration!
- Cost, especially as we move to more stereoscopic work.

Useful Info

- Buying a camera is something that we can only do rarely.
- It's worth getting it right!
- Use the EPSRC Engineering Instrument Pool!

http://www.eip.rl.ac.uk/

