

www.matchidmbc.com

Knowing the unknowns : Quantifying uncertainties in DIC using synthetic images

Dr. P. Lava¹, Prof. F. Pierron², Dr. L. Wittevrongel¹

¹ MatchID MBC, Belgium ² University of Southampton, UK

Two types of errors: Random and Systematic

Small Systematic Error Large Random Error

Small Random Error Large Systematic Error

The random error due to camera noise

- Explored via "static" images containing no signal
- Reduces with imposed filter size
- Algorithmic noise robustness?

F Hild and S Roux. Comparison of local and global approaches to digital image correlation Experimental Mechanics, 52:1503–1519, 2011.

The systematic error: a much more difficult story

Generation of ground-truth images with known signal

- Procedure
- Validation
- Examples
 - Sinusoidal field
 - Actual FEA field

Synthetic images: a brief history

[1] Bornert et al., Exp Mech 49(3):353-370, 2009.

[2] Lava et al., Opt Las Eng 47(7-8):747-753, 2009.

[3] Rossi et al., IJSS 49(3-4): 420-453,2012.

[4] Garcia et al., Photomechanics 2013.

[5] Wang et al., Strain 48(6): 453-462, 2012.

[6] Wittevrongel L., PhD thesis, KU Leuven.

[7] Sutton, Orteu, Schreier, Springer 2009.

[8] Reu, Exp Mech 51: 443-452, 2011.

[9] Wang et al., Strain 45(2): 160-178, 2009.

[10] Rossi et al., Strain 51(3): 206-222, 2015.

[11] Balcaen et al., Exp Mech 2017.

[12] ...

U(x,y), V(x,y) Imposed data

 $U_{p}(x_{0},y_{0}), V_{p}(x_{0},y_{0})$ Data at pixel locations

Interpolation!

Interpolation!

U(x,y), V(x,y) Imposed data

 $U_{p}(x_{0},y_{0}), V_{p}(x_{0},y_{0})$ Data at pixel locations

 $G(x_0+U_p,y_0+V_p)$ non-integer locations

Involve multiple interpolation steps!

Bias due to these must be as minimal as possible!

 $U_{p}(x_{0},y_{0}), V_{p}(x_{0},y_{0})$ Data at pixel locations

 $G(x_0 + U_p, y_0 + V_p)$ non-integer locations

 $G(x_0, y_0)$ **Deformed image**

U(x,y), V(x,y)**Imposed data**

Numerical deformation bias errors should be as low as possible

Rossi M., Lava P., Pierron F., Debruyne D., Sasso M. Strain, 2015.

Synthetic image generation: validation

1D Translation "Experiment"

Evaluate difference between Imposed shift and measured DIC shift

P. Reu, *Experimental and numerical methods for exact subpixel shifting*, Experimental Mechanics 51 (2011) 443-452

Synthetic image generation: validation

P. Reu, *Experimental and numerical methods for exact subpixel shifting*, Experimental Mechanics 51 (2011) 443-452

Synthetic image generation: validation

Subsampling

Spatial distribution at 0.3 subpixel shift

Binning

No subsampling

A first application: sinusoidal displacement field

• Reference image deformed using sine wave displacements of varying frequencies

$$u_x = \cos(\frac{2\pi n}{L}x)$$
 $\varepsilon_{xx} = -\frac{2\pi n}{L}\sin(\frac{2\pi n}{L}x)$

- Perform DIC
- Average displacements computed across y
- Fit best sine function to resulting 1D data
- Calculate amplitude
- Study impact of DIC settings

Effect of subset size: subset = 21 pixels

Effect of subset size: subset = 31 pixels

Effect of subset size: subset = 41 pixels

Amplitude: 0.942 Loss: 5.8%

Affine shape function, subset 41 pixels

Random error: 0,012 (standard deviation of displacement noise map, max of components)

Why?

An affine (first order) subset describes a linear varying displacement field Introduce **higher order shape functions** to describe more complex deformation fields

Quadratic shape function, subset 41 pixels

Random error: 0.041 (vs 0.012 for affine shape function)

Prefiltering

And even more ...

Subset + Shape function

All contribute to the general DIC reconstruction error

Interpolation kernel

Correlation criterion

Step Size

An approach to quantify the spatial resolution?

Displacements

Strains

Local vs. Global DIC

Spatial resolution is not really element or subset size

Problem statement

- Spatial resolution is not really element or subset size ... many DIC settings contribute
- What cut-off frequency should I adopt?
- How do I translate gradients in a sinusoidal field to my true application?

A more practical approach: Finite element based deformation fields

÷.

FEA nodal

Import DIC image

Align mesh/image and Generate deformed image

www.matchidmbc.com

Influence of DIC Parameters

Selection of DIC parameters is an optimum between noise reduction and signal reconstruction

MatchID's performance analysis module helps you to find that optimum!

MatchID Metrology Beyond Colors

A quick example

For the selected point in the strain peak:

Increase of the subset and/or step and/or strain window size will reduce the resolution, but will also result in a considerable drop in reconstructed strain peak

A quick example

When your point of interest is in the center:

Increase of the subset and/or step and/or strain window size will still reduce the resolution, but because the deformation is uniform (almost) no signal loss will occur!

Conclusions

- Ground-truth images allow to investigate the accuracy of DIC in both 2D and Stereo and as such helps you to optimize your test setup
- The selection of DIC parameters will define both the resolution and signal reconstruction.
- An attempt to approach the spatial resolution of DIC.
- The optimum selection of your parameters depend both on your test and your point of interest.

www.matchidmbc.com

MatchID

DIC Course Ghent 3-7 July 2017

'A nice mixture of hands on and computer processing'

