The Application of Strain Gauges to Composites

Anton Chittey
Senior Technical Support Manager

Vishay Measurements Group UK Limited
Stroudley Road, Basingstoke, RG24 8FW
www.vishaymg.com
Introduction

- Requires special considerations
 - Strain gauge selection
 - Adhesive selection
 - Surface preparation
 - Instrumentation
 - Special applications
Strain Gauge Selection

- Gauge Type
- Size
- Resistance
- STC (Self Temperature Compensation)
Gauge Type

- Encapsulated Gauge Ideal
 - Easier to handle and solder

- Open Faced
 - Lower reinforcing effect
 - Use on thin or low-modulus materials

- Pre-Leaded
 - Highly heat-sensitive materials
 - Reduced installation flexibility
 - May compromise glueline thickness
Strain Gauge Selection

Gauge Type

- **Strain Range**
 - 3 to 5% typical for constantan STC foil
 - Up to 20% for annealed constantan

- **Fatigue Life**
 - Karma
 - Iso-elastic
Size

- Fits on Specimen
 - Matrix size, not grid size!
- Gauges Detect Average Strain Under Grid
 - Grid length/width
 - Consider weave size
 - 5 x aggregate is a good guide
- 6mm Grid Length Considered Optimum in Many Cases
Resistance

- Poor Heatsink
 - Low thermal mass
 - Low thermal conductivity
- Gauge Self-Heating
 - Grid power density
 - 350 ohms minimum
 - 1000 ohms becoming more popular
STC
(Self Temperature Compensation)

- Thermal Output
 - Match to substrate material
 - TCE of substrate must be known
 - Composites are directional!

- Use Stock Gauges
 - 06 (steel) and 13 (aluminium) common
 - 00 stocked in popular patterns
Adhesive Selection

- Surface Finish
- Temperature
- Test Duration
- Installation Requirements
Surface Finish

- Smooth Surface
 - Install gauge directly onto surface
- Textured Surface
 - Adhesive must gap-fill
 - 2-step installation process
Cyanoacrylates

- **Instant**
 - Short term only (9-12 months max)
 - Will not gap-fill
 - -25 to +65 normal use
 - 3 to 5% or higher elongation

- **Be Wary of Generic Cyanoacrylates**
 - Use strain gauge certified adhesives only
Epoxy (100% solids)

- Wider Temperature Range
 - -195 to +95°C (room temperature cure)
 - As wide as -269 to +300°C

- Gap Filling Capability
 - Both filled and unfilled are suitable
 - Use on textured surfaces

M-Bond AE10, AE15, GA61
Epoxy (100% solids)

- Some Require Heat Curing
 - As low as 50°C
- Long Term (Years)
 - Highly moisture resistant
- As High as 15% Elongation

M-Bond AE10, AE15, GA61
Epoxy Phenolic

- Widest Temperature Range
 - -269 to +400°C
- Long Term (Years)
- Require Heat Curing
 - As low as 80°C

M-Bond 600, 610, 43B, 450
Epoxy Phenolic

- Will Not Gap Fill
 - Solvent thinned for 3-5 micron gluelines
 • Smooth composites only
- Elongation up to 4%

M-Bond 600, 610, 43B, 450
Polyester

- Special Applications Only
 - Not recommended for general-purpose use
- Room Temperature Cure
- Will Work to 150°C Without Further Curing
- Elongation up to 2%
Special Epoxy

- Special Applications Only
 - Not recommended for general-purpose use
- High Elongation
 - Up to 20%
- Requires Special Usage Considerations
Surface Preparation

- **Degrease**
 - Check for compatibility
 - Many aerosols will attack material
 - IPA safe on many plastics
 - Be aware of release agents
 - Silicone oils are difficult to remove
 - Heated acidic solution required
Surface Preparation

- Abrade
 - Smooth
 • 320 or 400 grit
 - Textured
 • Air abrade
 • Brush/paste
 - Special
 • Pumice powder and cotton bud
Instrumentation

- Variable Bridge Excitation
 - Minimise grid power density
 - 2V maximum
- Should Accept Common Resistances
 - 350 ohms
 - 1000 ohms
 - 500 ohms (more on this later!)
Special Applications

- High Cyclic Fatigue
- Avoiding Localised Failure
- Ultra-High Elongation (>20%)
- Shear Modulus Testing
High Cyclic Fatigue

- Metallic Gauge Will Fail Eventually
 - Constantan – lowest fatigue rating
 - Karma – significantly better fatigue life
 - Iso-elastic – better fatigue than Karma
- ‘Reference’ Gauge
 - Relate two gauges, one in lower strain area
- Re-Install Gauges at a Convenient Point in Test
Localised Failure

- Single-Strand Failure Causes High Localised Strain
 - Strain gauge fails with no indication of high strain
 - Gauge detects average strain

- Mitigate Strain Level
 - Apply Kapton film layer under gauge
Ultra-High Elongation

- Gauges and Adhesives up to 20% Strain Only
 - Use extensometer
 - Displacement sensor
 - ‘Top hat’ cross-section with strain gauge on top
Shear Modulus Testing

Iosipescu and Compact Specimens

- Non-uniform strain between notches
 - Unreliable results from conventional patterns
 - Can be as much as 30% error!
 - Average strain required
 - Strain gauges give average strain automatically!
- Special patterns available
 - 500 ohms
 - Use as quarter or half bridge
Shear Modulus Gauges

90° Fibres

0° Fibres

Strain distribution

Average Strain
QUESTIONS?
The Application of Strain Gauges to Composites

Anton Chittey
Senior Technical Support Manager

Vishay Measurements Group UK Limited
Stroudley Road, Basingstoke, RG24 8FW
www.vishaymg.com