Residual stress measurements for aerospace structural integrity

Professor Michael Fitzpatrick, Coventry University Lloyd's Register Foundation Chair in Structural Integrity and Systems Performance

Acknowledgements

- Dr Kashif Khan, Marco Pavan, Dr Niall Smyth, Professor Xiang Zhang (Coventry University)
- Dr Stefano Coratella (US Air Force Research Laboratory)

Coventry

- Professor Phil Irving, Dr Supriyo Ganguly (Cranfield)
- Dr Burak Toparli (TÜBITAK SAGE)

R Lloyd's Register

• Dr Domenico Furfari, Dr David Liljedahl (Airbus)

Residual stress measurement

• Technique often depends on the value of the problem, or, more accurately, the budget available to solve the problem • £10²

> Can I stop using this production step that costs £1 per part?

Coventry

Residual stress measurement

• Technique often depends on the value of the problem, or, more accurately, the budget available to solve the problem

- £10² Can I stop using this production step that costs £1 per part? £10³
- I have a new problem with components failing a residual stress acceptance criterion
- £10⁴
- I have a critical residual stress problem on a product development path Coventry

Residual stress measurement Typical costs • Technique often depends on the value of the problem, or, $\pounds 10^2 - \pounds 10^3$ Surface X-rays • Incremental hole drilling $\pounds 10^2$ - $\pounds 10^3$ • £10⁵ Neutrons, synchrotron · I have a major development X-rays, contour method $\pounds 10^4 - \pounds 10^5$ programme where the residual Deep Hole Drilling stresses are critical · However, access to neutron and synchrotron facilities is not but the value could be prohibitively expensive because £10⁷ - 10⁸ · Possible to collaborate with the facilities or university groups to study the engineering science underpinning an application problem If I can't prove it's safe this power Staffing associated with sample preparation, characterization, plant will be closed down / aircraft experimentation and analysis are often the highest costs, even for "simple" measurements will be grounded or development stalled Coventry Coventry

more accurately, the budget available to solve the problem

Example: Laser shock peening

- Novel method for introducing beneficial compressive residual stresses
- Use high-intensity laser pulse to produce a stress wave that deforms the material
- Applied to aeroengine components, we are investigating applications in airframe assemblies

Residual stress in aircraft structures

- Aerospace structures are highly safety-critical
 Structures are designed using damage-tolerance
- methodologies
- Need accurate characterization of residual stress
- New designs place greater reliance on integral structures
 Fewer natural crack-stoppers
 - Stiffening straps for crack retardation
- Future design and manufacture routes will introduce new challenges in residual stress assessment

Damage tolerance

- Accepts that structure will experience fatigue cracking or other damage
- Need accurate knowledge of crack growth kinetics and critical crack sizes
- New technologies such as welding are treated conservatively, particularly if residual stresses are unknown

Welded structures and crack retarders

- Bond local stiffening `straps' to the structure
- Provides crack retardation
- Bonding line prevents passage of crack into the strap, and the strap gives additional 'crack bridging' effects once crack has grown beyond the strap
- But, bonding the strap induces additional residual stresses

LASER SHOCK PEENING

- In aerospace applications, LSP may be required to be applied to thin sections if it is to be used to enhance fatigue life
- Typical fuselage skin has thickness of ~ 2 mm
- Peening may be applied selectively: e.g., along the line of a joint overlap, rather than on a large patch
- Challenges in selecting appropriate peen parameters
- Uniform stress field difficult to obtain

