In situ real-time assessment of biomaterial deformation using synchrotron tomography

Hari Arora¹, Marta Peña Fernández², Alex Kao², Rich Johnston¹, Andrew Bodey³, Gianluca Tozzi²

Swansea University¹, University of Portsmouth², Diamond Light Source³
Background research

30 kg C4 at 8 m stand-off
Air Blast

1 kg C4 at 1 m stand-off at 6 m depth
Underwater Blast
Motivations for micro-CT work

Arora et al., 2019 (to be submitted)
Advantages of synchrotron micro-CT

- Macroscopic observations in greyscale values – routinely done
- Microstructure observed without the need to fix the sample
Synchrotron tomography of lung

Tomography imaging of rat lung Branch line I13-2, Diamond Light Source
Explosive detonation recorded by Slowmo/H. Arora at Radnor Range Ltd., UK
Blast lung study at the synchrotron

Shock tube experiments on cadaveric Sprague-Dawley rats

Barnett-Vanes et al., Trauma, 2016

Eftaxiopoulou et al., Injury, 2016

Logan, Arora and Higgins, JoVE, 2017

Arora et al., Frontiers in Materials, 2017

Ranunkel, Gűder & Arora, ACS Appl. Bio Mater 2019
Blast lung study at the synchrotron

Synchrotron tomography imaging
Blast lung study at the synchrotron

Synchrotron tomography imaging

Beam

Sample

Imaging stage

Ventilator
Effect of blast loading profile on injury

- Alveolar failure patterns related to the loading mechanics
 - Sparse or diffuse damage site formation
 - Shared boundary breakdown
- Detailed morphological analysis provides insight to injury mechanism

Vitharana...and Arora, 2019 (submitted)
Structural disruption and lethality

In vivo blast lung research observations

- Lethality established throughout literature
- What about the sub-lethal doses?

Barnett-Vanes et al., Trauma and Acute Care Surgery (2016)
Deeper exploration of tissue mechanics
3D strains quantified in damaged lungs

Arora et al., Frontiers in Materials, 2017
Future directions for lung injury research

• Hotspots of high strain in injured tissue - sphere of influence of injury
• Developing protocols for new injury classification
• Validation for detailed damage models in soft tissue
• Continued development of lung tomography model
 • Collaborations in other lung pathologies
 • Visiting SPring-8 July 2019

Arora et al., Frontiers in Materials, 2017
Interrupted vs continuous imaging

- Conventional methods for in situ imaging use interrupted mechanical tests
- Biomaterials and other common materials are viscoelastic
- Relaxation / creep can affect image quality
- Not realistic / ideal loading conditions
Summary

• Micro-CT is commonly used in a wide variety of applications
• Synchrotron sources allow for high-speed, high phase contrast, high-throughput, high-resolution imaging (relatively large field of view)
• Interrupted tests can still inform on the mechanical state
• Continuous imaging can give more realistic strain states during imaging of failure; scan times currently 10-30s; to jump >10x faster soon
Hari Arora¹, Marta Peña Fernández², Alex Kao², Rich Johnston¹, Andrew Bodey³, Gianluca Tozzi²

Swansea University¹, University of Portsmouth², Diamond Light Source³

Acknowledgements: funding/support from:

- ONR & Sêr Cymru National Research Network for blast protection research
- The Royal British Legion & Imperial College London for my Research Fellowship on Blast Lung
- The Royal Society and the Swansea Uni. Impact Acceleration Account with EPSRC for the imaging studies
- Diamond Light Source at I13-2

Imperial College London
Robert C. Schroter
Anthony M.J. Bull
William G. Proud
John P. Dear

Swansea University
Advanced Imaging of Materials Centre

Diamond Light Source
Christophe Rau
Andrew Bodey

LaVision UK
Dave Hollis + Others

Uni. Of Moratuwa
Angelo Karunaratne

University of Tennessee
Dayakar Penumadu