Mechanical properties of carbon nanotube webs

J. C. Stallard, W. Tan, N. A. Fleck, A. M. Boies, F. R. Smail.
The ANAM Initiative.

Broad collaboration between Cambridge Engineering and Materials Science Departments, and Ulster University, and several industrial partners.

Focus on direct-spun CNT materials, made by the Windle Process.
Carbon Nanotubes: Intrinsic Properties

Individual Tubes: MWNT
wall structural properties

\[E = 1 \text{ TPa} \]
\[\sigma_f > 100 \text{ GPa} \]
\[\rho \sim 2200 \text{ kg/cm}^3 \]

Good **understanding** of mechanics with **strong theoretical validation**

Yu et al (2000)
Wang et al (2010)
Zhang et al (2014)

Electrical Conductivity: \(2 \times 10^5 \text{ s/cm} \)
Thermal Conductivity: \(3500 \text{ W/mK} \)

- Can we realise the properties of CNTs in **Direct-spun Mats** and other **Bulk CNT Materials**?
- If not, **why**?
Carbon Nanotubes: Intrinsic Properties

[Graph showing specific properties of materials, including specific Young's Modulus, specific strength, and specific electrical conductivity.]

ANAM Initiative
Advanced Nanotube Application and Manufacturing
Production and Microstructure of direct-spun CNT Mat & Fibre from the ‘Windle Process’

CNT Mat

Typical Microstructure

Tension during winding

CNT Aerogel “Sock”

Aerogel Formation by CNT Agglomeration

T ~ 1300°C

Methane, Ferrocene, Thiophene

1μm

Interconnected Bundle Network

Detail of Network Junctions: Bundles branch and Cross

Cross-section of Bundle Microstructure

ANAM Initiative
Advanced Nanotube Application and Manufacturing
Bulk CNT Materials: *methods of manufacture*

- Forest and densified pillars
- Fibre spun from Forest
- Mat drawn from Forest

Buckypaper from filtration

Wet spinning from solution

CNT Foam

Diffusion of solvent out of fibre

CNT Fibre

Coagulant

Tension
The Properties of Bulk CNT Materials: Mechanical
The Properties of Bulk CNT Materials: Electrical & Thermal

<table>
<thead>
<tr>
<th>ρ (kg/m³)</th>
<th>Electrical Conductivity (s/cm)</th>
<th>Thermal Conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>1000</td>
<td>100000</td>
<td>100000</td>
</tr>
</tbody>
</table>

[Diagram showing various categories of CNT materials and their properties, with labels for different types of materials and their respective electrical and thermal conductivities.]
The Properties of a Direct-spun CNT Mat: Uniaxial Response, composition, and electrical properties

Fracture and Delamination

Out of Plane Response

ANAM Initiative
Advanced Nanotube Application and Manufacturing
Direct-spun CNT Mat: In-Plane Piezoresistivity, and Unloading

\[\sigma_{11}(\text{MPa}) \]

\[\epsilon \]

\[R/R_0 \]

\[\sigma_{11}(\text{MPa}) \]

\[R/R_0 \]

\[E_U (\text{GPa}) \]

\[\text{GF} \]

\[\epsilon \]
In-Situ Tensile Testing

CNT Mat Sample

0% Strain

10% Strain

12% Strain

5 μm

500 μm
Microstructural change during the uniaxial response
• Rope-like CNT bundles form random interlinked bundle network
• Network deforms like a foam, with transverse deflection of struts.

Direct-Spun Mats: the story

0% Strain
1. Bundle straightening
2. Network Alignment
3. Bundle bending/kinking

10% Strain
1
2
3

Loading

\(\sigma \) (MPa)

\(\epsilon_{11} \)

\(0 \) | \(0.05 \) | \(0.1 \) | \(0.15 \) | \(0.2 \) | \(0.25 \) | \(0.3 \)

0 5 10 15 20 25 30 35 40 45

0 Degrees
45 Degrees
90 Degrees

3\mu m

3\mu m

CNT Mat

Interconnected Bundle Network

Detail of Network Junctions: Bundles branch and Cross

Cross-section of Bundle Microstructure
Micromechanical Model for direct-spun mat

CNT Bundles are Anisotropic:
- $E_{11} = 680 \text{ GPa}$
- $G_{12} = G_{23} = 9.5 \text{ GPa}$
- $E_{22} = E_{33} = 50 \text{ GPa}$
- $\nu_{12} = \nu_{13} = \nu_{23} = 0.3$

1. Network structure causes foam-like network deformation.
2. Bundles are rope-like.

Modulus below that of CNTs because…

Approximate network with a periodic honeycomb unit cell.
Micromechanical Model for direct-spun mat

CNT Bundles are Anisotropic:
- $E_{11} = 680$ GPa
- $G_{12} = G_{23} = 9.5$ GPa
- $E_{22} = E_{33} = 50$ GPa
- $\nu_{12} = \nu_{13} = \nu_{23} = 0.3$

Approximate network with a periodic honeycomb unit cell

Macroscopic yield dictated by the shear strength of CNT bundles.

Network reorientation causes hardening
Routes for Improvement...

Therefore, improvement in mechanical properties can come from **ALIGNMENT** of **CNT BUNDLE MICROSTRUCTURE**

For $G_B \ll E_B$:

$$E_{Network} = \bar{\rho} \cdot \frac{2^{\frac{2}{3}}kG(1+\sin \theta)^2}{\cos^2 \theta}$$
Response in Fluids

- Chlorosulfonic acid lowers σ and E by over an order of magnitude.
- ε increases to ≈ 1.4 at same rate.
Response in Fluids

Immiscion in chlorosulfonic acid results in creep at low stresses.

Electrical resistance also affected by fluid immersion… but mechanical behaviour is time invariant.
Debundling/debonding upon CSA Immersion

\[
\text{[HSO}_3\text{Cl]}_n + C_x \rightleftharpoons [C_x\text{H}_n^+] + [\text{ClSO}_3^{-}]_n
\]

Dry state: CNTs are closely bundled due to strong van-der-Waals bonds.

After acid infiltration, protonation separates adjacent CNTs.
Debundling/debonding upon CSA Immersion

The presence of **adsorbed ions** at the CNT wall, and in the **solution** screen the positive charge upon the CNT walls, and overcome the **van-der-Waals** attraction.
Fluid Processing in superacid solutions

Ductility and drawing stress controlled by the concentration of a superacid solution.

Drawing process to enhance alignment

1. Acetone Condensation
2. Super-acid Immersion and Stretching
3. Coagulation: acid removal
4. Air Drying
5. Heat Treatment
6. Acetone Condensation

Questions:
- Effect of Acid Treatment
- Effect of Stretch in Acid
- Effect of tension in coagulation
Properties of drawn fibres

- All properties improved significantly.
- Change in ultimate specific strength and conductivity a factor of 3.
- Larger change in stiffness due to switch away from bending.
Summary

- The properties of direct-spun carbon nanotube materials (and CNT materials in general) vary across a wide range of density.
- The stiffness and strength of direct-spun mats is reduced by the CNT bundle network of low nodal connectivity, and by the rope-like structure of the CNT bundles.
- Mechanical and electrical properties of direct-spun CNT mats are enhanced by tensile drawing in different fluids, particularly in superacids.