Structural Response of CFRP Materials Subjected to Simulated Lightning Strikes

TIMOTHY M HARRELL1, OLE T THOMSEN2, JANICE M DULIEU-BARTON2

T.M.HARRELL@SOTON.AC.UK

1SCHOOL OF ENGINEERING, UNIVERSITY OF SOUTHAMPTON
2BRISTOL COMPOSITES INSTITUTE, UNIVERSITY OF BRISTOL

14TH INTERNATIONAL CONFERENCE ON ADVANCES IN EXPERIMENTAL MECHANICS

10-12 SEPTEMBER 2019
Why study this?

• Lightning can strike wind turbines up to 30 times per year
• 5 times greater energy than aircraft standard (10 MJ/Ω)
• **Costing operator millions of pounds a year**

- Burning/charring
- Blade Failure
- Tip Detachment
CFRP Materials in Wind Turbine Blades

- CFRPs (relative to GFRP) enables longer wind turbine blades with limited knock-on effect on blade mass

- Heterogeneous material with anisotropic properties
 - Thermal conductivity and electrical conductivity
 - Particular issue with lightning strike

![Graph showing electrical and thermal conductivity of different materials](Image credit: researchgate.net/Brauer et al.)

- Electrical Conductivity
- Thermal Conductivity

![Diagram of wind turbine blade construction](Image credit: University of Southampton)
Lightning in Wind Turbine Blades

- CFRP materials (semi-conductors) provide a different path for lightning to take to ground.
- There are two typical scenarios where lightning enters CFRP perpendicular to the surface, also known as, arc-entry.
 - Scenario 1, direct strike to CFRP
- Arc-entry is the most severe lightning damage mechanism on CFRP as the conductivity severely restricts the flow of current causing heat.
Lightning in Wind Turbine Blades

- CFRP materials (semi-conductors) provide a different path for lightning to take to ground.

- There are two typical scenarios where lightning enters CFRP perpendicular to the surface, also known as, arc-entry.
 - Scenario 1, direct strike to CFRP
 - Scenario 2, internal flashover

- Arc-entry is the most severe lightning damage mechanism on CFRP as the conductivity severely restricts the flow of current causing heat.
Aims and Objectives

• Predict structural response of CFRP after a lightning strike:
 ◦ Developing experimental procedure
 ◦ Development of modelling framework
 ◦ Compare/Validate

Simulated Lightning Strike Experiment → Sub-Structural Buckling Test in Compression After Lightning Strike Rig (CALS) → Structural Model
Simulated Lightning Strike Experiments

- 14 x CFRP unidirectional (UD) eight ply laminate
 - 800 gsm fabric
 - Epoxy Resin Matrix
- 550 mm long x 500 mm wide x 7 mm thick
- 10/350µs waveform
- Peak Current shown:
 - 50kA
 - 125kA
Simulated Lightning Strike Experiments

• 14 x CFRP unidirectional (UD) eight ply laminate
 ◦ 800 gsm fabric
 ◦ Epoxy Resin Matrix

• 550 mm long x 500 mm wide x 7 mm thick

• 10/350µs waveform

• Peak Current shown:
 ◦ 50kA
 ◦ 125kA
Simulated Lightning Strike Experiments

- 14 x CFRP unidirectional (UD) eight ply laminate
 - 800 gsm fabric
 - Epoxy Resin Matrix
- 550 mm long x 500 mm wide x 7 mm thick
- 10/350µs waveform
- Peak Current shown:
 - 50kA
 - 125kA
Damage Assessment of Lightning

- Damaged samples:
 - Assessed via visual inspection and CT scans.
 - Waterjet cut to remove the chamfered edge and centre the damage.
Compression After Lightning Strike (CALS)

- Lightning damage worst effects are seen in compression
- Rig large enough to evaluate structural scale effects
- Instron Schenck test rig 630kN load capacity
- Loaded in compression 0.5mm/min
- Stereo DIC was performed on both sides of the plate
Compression After Lightning Strike (CALS)

- Compression After Lightning Strike
- Lightning damage worst effects are compression
- Rig large enough to evaluate structural scale effects
- Instron Schenck test rig 630kN load capacity
- Loaded in compression 0.5mm/min
- Stereo DIC was performed on both sides of the plate

DIC Test Setup

<table>
<thead>
<tr>
<th>Technique Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
</tr>
<tr>
<td>Sensor</td>
</tr>
<tr>
<td>Lens</td>
</tr>
<tr>
<td>Lightning</td>
</tr>
<tr>
<td>Imaging distance</td>
</tr>
<tr>
<td>Field of View</td>
</tr>
<tr>
<td>Pixel resolution</td>
</tr>
</tbody>
</table>

- 2 x Stereo 3D Image Correlation (2 cameras measuring top surface and 2 cameras measuring bottom surface)
- 4 x MANTA G504B (gigabit Ethernet) 12 bit, 2452 x 2056 pixels
- 2 x AF NIKKOR 28mm F/8D
- 2x AF NIKKOR 50mm F/8D
- 4 x NILA ZAILA LED Lights
 - ~2 m from bottom surface
 - ~4 m from top surface
- 400 mm x 400 mm x 100 mm
 - ~1 px = 0.27 mm

Correlation Setup

<table>
<thead>
<tr>
<th>DIC Software</th>
<th>MatchID 2018.2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Procedure</td>
<td>Zero Normalized Sum of Differences Squared</td>
</tr>
<tr>
<td>Subset Size</td>
<td>33 px</td>
</tr>
<tr>
<td>Step Size</td>
<td>16 px</td>
</tr>
<tr>
<td>Sub-pixel interpolation</td>
<td>Bicubic Spline</td>
</tr>
<tr>
<td>Shape Function</td>
<td>Quadratic</td>
</tr>
<tr>
<td>Stereo Transformation</td>
<td>Quadratic</td>
</tr>
<tr>
<td>Strain Calculation</td>
<td>Logarithmic Euler-Almansi strain tensor</td>
</tr>
<tr>
<td>Displacement Noise Floor ((u, v, w))</td>
<td>(0.026227, 0.0089122, 0.13067) mm</td>
</tr>
<tr>
<td>Strain Noise Floor ((\varepsilon_{xx}, \varepsilon_{yy}, \gamma_{xy}))</td>
<td>(150, 95, 120) (\mu m/m)</td>
</tr>
</tbody>
</table>
Numerical Modelling

- Shell post-buckling finite element model with large deformations
- Abaqus 6.14 Riks Method with S4R shell elements
- The area of the damage was assessed using the visual inspection and CT
- Damaged areas taken into account by reducing stiffness to essentially zero
Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.

[Diagram showing out of plane displacements at 60 kN, 50 kA, and 125 kA load levels with labeled damaged and centreline regions.]
Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.
Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.
Conclusions

- Designed and manufactured novel CALS rig to include structural scale effects on CFRP materials damaged by lighting

- DIC enables capture of the redistribution away from the damaged region

- Damage induced is representative of lightning and able to quantify the buckling and post-buckling response

- The validation of the FEM creates opportunity to study other damage scenarios.
THANK YOU FOR YOUR ATTENTION

This research presented was sponsored by the Marie Skłodowska Curie Actions, Innovative Training Networks (ITN), H2020-MSCA-ITN-2014, grant award number 642771, as part of the project “Lightning protection of wind turbine blades with carbon fiber composite materials” (SPARCARB).

Contact: Timothy M Harrell, T.M.Harrell@soton.ac.uk
Researchgate: https://www.researchgate.net/profile/Timothy_Harrell
References

