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• Violet Crumble was a friable sugar honeycomb bar that easily shattered 
when cut into bars

• Product wastage was as high as 40%
• Ultrasonically excited resonant cutting devices were able to cut with 

better accuracy and minimal waste
• But ……………
• Blade failures were common

In the beginning there was Violet Crumble
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50kHz tuned ultrasonic cutting blade and handpiece

Ultrasonic cutting inserts (Mectron tips)

/2

Transducer Cutting Blade
…… and then came surgical devices

• In their simplest form, they are 
simply single-blade cutting device

• that also suffer from modal 
interactions

• But we also started to characterise 
other nonlinear behaviours



In the 1950’s Lewis Balamuth proposed and patented a 
cutting tool for “ultrasonic dental cutting operations”.

2001 saw the first commercial device designed for bone 
cutting applications: Piezosurgery® from Mectron SpA.

Ultrasonics in bone surgery

Piezosurgery® Device, courtesy of Mectron SpA
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Ultrasonics in bone surgery

Longitudinal 
node

Flexural 
node

Longitudinal 
antinode

Bone cutting combining a longitudinal-
flexural vibration allows delicate and 
accurate bone cuts without damage to soft 
tissue structures.



Device precision and selectivity

Window cut in 
egg – membrane 

intact

Mectron transducer with OT7 
cutting insert



Clinical procedures: Osteotomy

Comparison with traditional cutting methods

Bone saw Bone bur Ultrasonic device 
(Piezosurgery® Device)

Representative histologic photomicrographs of decalcified specimens characterising 
the appearance of the cut edges of osteotomy incisions baseline (original 

magnification 2.5x, stain hematoxylin-eosin)

Images courtesy of Mectron S.p.A 



3D and 1D laser Doppler vibrometers allow us to carry out a large number of 
characterisations of ultrasonic devices:
• Experimental modal analysis
• Operational mode
• Amplitude measurement
• Nonlinear response analysis
• Identification of unstable regions
• Modal interactions

The set-up for vibration measurements ….

US device

Turntable



Experimental and FE modal analysis

FE predicted and EMA measured blade modes 
of vibration

FRF from transducer-blade assembly 
measured using 3D laser vibrometer

Blade 1st

Longitudinal 
mode



Principal parametric resonance:   21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

34575 34625 34675 34725 34775 34825

Frequency (Hz)

Pr
im

ar
y 

R
es

po
ns

e 
(m

/s
)

20 V (Dow n)
40 V (Dow n)
60 V (Dow n)

0
0.2
0.4
0.6

0.8
1

1.2
1.4

34575 34625 34675 34725 34775 34825

Frequency (Hz)

Pr
im

ar
y 

R
es

po
ns

e 
(m

/s
) 20 V (Up)

40 V (Up)
60 V (Up)

0

0.4

0.8

1.2

1.6

2

34600 34650 34700 34750 34800 34850

Frequency (Hz)

Se
co

nd
ar

y 
R

es
po

ns
e 

(m
/s

)

60 V (Up)

40 V (Up)

0

0.4

0.8

1.2

1.6

2

34600 34650 34700 34750 34800 34850

Frequency (Hz)

Se
co

nd
ar

y 
R

es
po

ns
e 

(m
/s

)

60 V (Dow n)

40 V (Dow n)

• Secondary response measured at two excitation levels

• Primary response measured at three excitation levels

1 
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Double principal parametric resonance

Two v-regions in two distinct frequency bands
of the primary response indicate that the
excitation level threshold for two modal
couplings is reached.

The first combination resonance has a higher
excitation level threshold and is weakly coupled.

The second combination has a lower excitation
level threshold and is strongly coupled.
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Parametrically excited combination resonances

l

1 2

Combination I: 21  l

432  l

l243

Combination II:

• System driven at 35.29 kHz

• System driven at 43.1 kHz



Combination I
Combination II

Mode combination II has a lower threshold and 
wider unstable region

Characterising unstable regions 
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Transducer and half wavelength blade systemTransducer

The transducer exhibits a softening 
characteristic 

The transducer-blade exhibits a softening 
response characterised by the jump 

phenomenon and a wide unstable region 

jump-up

jump-down

The jump phenomenon 

Unstable 
region



(a) Continuous excitation (b) Intermittent excitation with cooling
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The jump phenomenon and thermal effects 



Bidirectional frequency sweep technique 

Sine burst
• 4000 cycles
• At 28 kHz, burst length 0.286 seconds
• A time delay between successive bursts

Transient Steady state

Measurement 
period

Z-Dirn

R-Dirn

Removing thermal effects 



Identifying the delay time between successive bursts

Time delay: 
1sec

Time delay: 
10sec
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Ultrasonic Implant Surgery



Reaching deeper structures with longer devices

OT7
I1

I2

I3

I4I1 – I4 are multiple-wavelength 
cutting tips for minimally invasive 
surgeries

OT7 is a half-wavelength 
cutting device



EMA: Half wavelength devices

f = 27190Hz

Longitudinal Node Flexural Node



EMA: Full wavelength devices

f = 25935Hz

Longitudinal NodeLongitudinal Node



Harmonic characterisation of long devices
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An ultrasonic-sonic device for bone biopsy, 28 kHz



An alternative ultrasonic-sonic device for bone biopsy

The ultrasonic transducer-horn 
operates at 50 kHz



The ultrasonic horn impacts with a cylindrical free-
mass and the free-mass impacts with the needle

10000 fps



The average contact time for 30 
impact events is used in a
numerical model to estimate the 
contact stiffness.

Simulated impact force used to show 
the contact time between the surgical 
needle and target

Calculating the contact stiffness k5 from ultra-high 
speed camera measurements



The needles extracted intact and viable biopsy samples where the 
majority of micro-architecture remained intact 

(a) Ultrasonic resonant needle                       (b) Ultrasonic-sonic needle                   

3D micro-CT reconstruction of bone biopsy samples



Finite element analysis
fr : 35294 Hz 

Experimental modal analysis
fr : 35129 Hz 

Nodal plane

Boss

Backmass

Flextensional transducers – an 
alternative for bone biopsy



Benefits for ultrasonic orthopaedic devices:

• Potential for high vibrational displacement at low 
ultrasonic frequencies

• Simple fabrication 

• Tailoring of behaviour by choice of end-cap 
material and dimensions

But previously used in low power applications:
hydrophone, accelerometer, sensors, actuators, 
motors. 

Flextensional transducers – cymbal

[2] E.J. Park et al, Ultrasound Mediated Transdermal Insulin Delivery in Pigs Using a Lightweight Transducer, Pharm Res 24(7), 2007

[2]



Cymbal transducer
• The geometry of the end-caps greatly affects the 

frequency response of a cymbal transducer. 
• Cymbal transducers exhibit a double peak in the 

frequency response spectrum, due to even small 
asymmetries in the epoxy layer or in the end-caps. 



New cymbal for driving an orthopaedic surgical device

PZT disk

Epoxy layer

Metal ring

• The piezoceramic disc is coupled, through an epoxy layer, to a metal ring.

• The end-caps are fixed directly to the metal ring via small screws.

• In this configuration, the location of highest stress is no longer in the epoxy 
layer.



Measurement of new cymbal

PZT disc: Diameter: 12.7 mm
Thickness: 1 mm

Metal ring: Material: brass
Thickness: 1 mm
Outer diameter: 16.7 mm
Inner diameter: 14.7 mm

Epoxy: Eccobond 45LV
Thickness: 1 mm

(Hz)



Prototype transducer for cutting device

(Hz)



Measurement of a prototype surgical device



Ultrasonic Planetary Core Drill – UPCD 

Drilling in sandstone and in 
frozen sand/ice



Drilling into sandstone in the lab 



Delivers the hammering action by applying 
ultrasonic vibration to a free-mass, which 
in turn strikes a splined cutting bit-holder.

Weight-on-bit and power requirements are 
low.

Ultrasonic percussion 



The Earth analogue site for trials



Test site and living conditions!



Testing the driller/corer and sample containerisation



Thank you for your attention 
Margaret.Lucas@Glasgow.ac.uk 

#UofGWorldChangers
@UofGlasgow


