

# Tomographic imaging of displacement and strain fields: Current techniques and applications

Pablo D. Ruiz

Wolfson School of Mechanical and Manufacturing Engineering







Engineering and Physical Sciences Research Council



# Outline



- 1-D to 3-D displacement/strain measurement
- Why 3-D strain?
- Techniques
- Comparative table
  - Spatial resolution, strain range, materials, penetration depth

# **1-D strain measurement**



• Extensometer



• Resistive strain gauge



• Fibre Bragg sensors



Cai, J et al. Structural Health Monitoring for Composite Materials DOI: 10.5772/48215

# **2-D strain measurement**

- Arrays of 1-D sensors
- Grid method, Moiré
- Triangulation, photogrammetry
- Digital Image correlation
- Neutron diffraction
- X-ray diffraction
- Ultrasound
- Thermal stress analysis
- Photoelasticity
- Moiré Interferometry
- Speckle Interferometry

In-plane, out-of-plane and slope sensitivity

#### Static and dynamic applications

Cai, J et al. Structural Health Monitoring for Composite Materials DOI: 10.5772/48215









# **3-D displacement measurement**

BSSM BSSM entrue execution ever source and interesting 1964 - 2014

- 1-D embedded detector arrays (SGs and FBGs)
- 3-D strain gauge rosette
- Ultrasound
- X-Ray micro CT + DVC
- Magnetic Resonance Elastography
- OCT + DVC
- Wavelength Scanning Interferometry
- Tilt Scanning Interferometry
- 3-D Photoelasticity
- Other varieties of tomographic methods with DVC (PET, acousto-optic, ND, XD, FBG arrays, etc.)

# Methods for 3-D strain imaging

BSSM BSSM entrus sector sector sector 1964 - 2014

- Algorithms
  - Correlation
  - Phase detection

- Mechanical Stimuli used for perturbation
  - Quasi Static
  - Low frequency vibration (compressive/shear)

# Why 3-D?



- Experimental data is needed to define and validate computer models
- Material characterization / identification of constitutive parameters. (Uniqueness issues)
- **3-D elastography** (virtual palpation)
- Relevant in medicine and biology (shear modulus G\*)
  - In soft tissues, G\* changes due to: Aging, Alzheimer's disease, Normal pressure hydrocephalus, Tumours, Multiple sclerosis, Scarring
- Engineering (Composites, functional materials, damage characterization, anisotropy)

#### The 3-D strain rosette, 1963





Baker, W. E. and R. C. Dove, "Construction and evaluation of a three-dimensional strain rosette." Experimental Mechanics, 3, 201-206 (1963)

## The 3-D strain rosette, 2011





Mulvihill, D.M., et al., A Comparison of Various Patterns of Three-Dimensional Strain Rosettes. Strain, 47, e447-e456,(2011)

# Ultrasound





- Send acoustic pulse (few MHz) and measure echo delay
- Compare 2 states to measure displacement
- Compare displacement at 2 points to measure strain

http://www.NYSORA.com

Ophir, J., et al., *Elastography: Imaging the elastic properties of soft tissues with ultrasound*. J. Med. Ultr., **29**, 155-171 (2002).

# Ultrasound elastography example

BSSM BSSM Minima search rote Transmitter and the BSDM Anniversity 1964 - 2014

- Ovine kidney in-vitro
- Bright = 'soft'; dark = 'stiff'



Ophir, J., et al., Elastography: Imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultr., 29, 155-171 (2002)

# Ultrasound



- In soft tissues: K~2ρc (ρ: density, c:wave velocity ~1540m/s)
- Most attempts to map K distributions failed, as c nearly uniform in tissues (low contrast-to-noise ratio).
- Shear modulus G is the main parameter identified in US elastography.



## **Strain Filter concept**





## **Depth and resolution**





# X-ray micro CT





Dr. Fredrik Forsberg, PhD Thesis, Lulea University, 2008

# X-ray micro CT









### X-ray intense source

BSSM BSSM BSSM BHAN HEALEBERHY 1964 - 2014

• Synchrotron facility

- Dynamic applications at high resolution



# X-ray micro CT





Wood microstructure,  $112 \times 112 \times 56 \ \mu m^3$ 

Dr. Fredrik Forsberg, PhD Thesis, Lulea University, 2008



|                                     | Synchrotron        | Desktop systems  |  |
|-------------------------------------|--------------------|------------------|--|
| Sample average<br>diameter          | <50 mm             | <200 mm          |  |
| Spatial resolution<br>max / typical | 0.2 μm / 0.2 μm    | 0.5 μm / 5-10 μm |  |
| Scan time                           | 1 sec - 10 minutes | 1-2 hours        |  |

## **Depth and resolution**





# Magnetic Resonance Elastography



#### MRI

- Measure nuclear spin precession
- Encode position using magnetic field gradients (frequency proportional to magnetic field)
- Non-magnetic samples

#### MRE

- Visualize mechanical waves in tissue
- Wave velocity and wavelength depend on elastic modulus

#### Phase contrast measurement of shear waves





Atay, S.M., et al., *Measurement of the Dynamic Shear Modulus of Mouse Brain Tissue In Vivo by Magnetic Resonance Elastography.* Journal of Biomechanical Engineering, 2008. **130**(2): p. 021013-021013.

### MRE



Detection of mm-amplitude harmonic motion requires synchronous actuation



# Mouse brain





0' 0

500

1000

Frequency (Hz)

1500

2000

Clayton, E.H., J.R. Garbow, and P.V. Bayly, *Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.* Physics in Medicine and Biology, 2011. **56**(8): p. 2391

## Depth and resolution





# **Optical Coherence Tomography**



polymer injection moulded part





26/53 Courtesy David Stifter, Upper Austrian Research GmbH

# **Optical Coherence Tomography**





human skin



# **Optical Coherence Tomography**







# Measurement of 3-D corneal displacements using DVC + OCT

#### Motivation



To use corneal mechanical response, rather than only corneal thickness, as the criteria to perform refractive surgery.

#### Long term objective

- Measure internal 3D deformation field
- Identify depth-resolved constitutive parameters
- Predict corneal mechanical behaviour during/after ablative surgery



# Methodology





#### **Optical coherence tomography**





#### 1024 $\times$ 512 $\times$ 1024 voxels data volume Acquisition time ~ 3 minutes



#### Digital volume correlation



#### Volume divided into sub-volumes.

Displacement vector obtained from tracking and matching voxels between sub-volumes in reference and deformed states

### **Inflation test**





Swept Source Optical Coherence Tomography system (Thorlabs OCS1300SS).

Porcine corneas inflated from 2 to 2.5 kPa

### **Inflation test**





- 24<sup>3</sup>-voxel sub-volume, 50% overlap
- Inflated from 2 to 2.5 kPa

### Displacement





Strain





## Depth and resolution





#### **OCT & DVC noise study**







# Wavelength scanning interferometry (phase detection) WSI

# WSI with multiple illumination directions



#### **3** illumination directions with offset OPDs

# WSI with multiple illumination directions



#### Full paper:

Chakraborty, S. and P.D. Ruiz, J. Opt. Soc. Am. A, 2012. 29(9): p. 1776-1785.

# **Opaque surface, <u>one</u> illumination beam**









# WSI with multiple illumination directions



Theoretical  $\delta\Lambda$ =68 µm; measured  $\delta\Lambda$  = 70 µm

# **Evaluation of the Sensitivity matrix**



- Flat opaque scattering surface used as datum
- Record full scan and perform pixel-wise FFT
- Orientation of the reconstructed surfaces for each illumination is used to evaluate illumination and sensitivity vectors



## Vector transformation to find u, v, w





# 2) phase unwrapping and displacements





#### *u*, *v* and *w* are obtained by inverting the sensitivity matrix

Unwrapping algorithm:

Salfity, M.F., et al., Applied Optics, 2006. 45(12): p. 2711-2722.

## Volume reconstruction: 1) Re-registration

• The complex volumes associated to all 3 sensitivity vectors are re-registered to a common coordinate system.



### Validation of u(x, y, z); v(x, y, z) and w(x, y, z)





### **Validation results**





#### **OCT & DVC noise study**







# Tilt Scanning Interferometry (phase detection) TSI

















## **Tilt scanning interferometry: Setup**





# Tilt scanning interferometry: Setup







#### Time-varying intensity at two pixels



# Wrapped phase maps





2000 1600 1400 1400 400 400

Left illumination

**Right illumination** 



Horizontal in-plane displacement component

Out-of-plane displacement component



P. D. Ruiz et al (2006) *Proc. Roy. Soc. A*, 462, (2072):2481-2502

### **Displacement fields – experimental vs FEA**









**Finite Element Analysis** 

#### Horizontal cross-sections through contact point





#### Summary of measurement techniques



| Technique                | Materials                                                | Minimum size of<br>gauge volume                                                                                          | Displacement/strain<br>sensitivity | Acquisition time                                                      |
|--------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|
| 3D strain<br>gauge       | polymer model                                            | > 1 mm <sup>3</sup>                                                                                                      | ~10e-06                            | ~1 μs (1 point)                                                       |
| Ultrasound               | Tissues, metals, composites                              | ~ 1 mm <sup>3</sup>                                                                                                      | ~ 10e-03                           | ~ and below 1 s 3-D<br>US                                             |
| MRE                      | Proton rich<br>water-fat<br>carbon possible?             | (250 μm) <sup>3</sup>                                                                                                    | < 1 µm                             | 4 ms/slice<br>(spin tagging)<br>Few minutes/slice<br>(phase contrast) |
| Xray<br>CT+DVC           | foams, ceramics, granular<br>materials, composites, bone | (1-10 μm) <sup>3</sup><br>(structure)<br>(10-100 μm) <sup>3</sup><br>(displacement)<br>(30-300 μm) <sup>3</sup> (strain) | ~10e-04 - 10e-06                   | tens of minutes                                                       |
| OCT<br>Phase<br>contrast | optically translucent                                    | <(10 µm)³                                                                                                                | < 1 µm                             | 10 μs A-scan<br>(Spectral domain)                                     |
| OCT + DVC                | optically translucent                                    | ~(50 μm)³                                                                                                                | ~10e-04                            | ~10 minutes per scan<br>(full volume)                                 |



# Thank you for your attention!