KU LEUVEN

General introduction to stress reconstruction in metal plasticity

Sam Coppieters & Marco Rossi

The mystery of plastic deformation¹

Stan Hoogenboon, Ankara 2002

¹ E.A. Tekkaya, JSTP International Prize Lecture "*The mystery of plastic deformation*", ICTP 2014, Nagoya, Japan KU LEUVEN

Experiment

Wire

Step 1: Attach weight until the wire elongates plastically
 Step 2: Rotate the weight

Experiment: Step 2

Analysis: Step 1

□ Uniaxial tension causes yielding and plastic elongation of the wire

Uniaxial Tension: Phenomenological macroscopic response of metals

Uniaxial Tension: Phenomenological macroscopic response of metals

Uniaxial Tension: Phenomenological macroscopic response of metals

Analysis: Step 2

Ingredient 1: Yield criterion

von Mises (1931)

$$\sigma_e = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{\frac{1}{2}}$$

where are the dislocations?

$$\sigma_e = \left[\frac{3}{2}\boldsymbol{\sigma'}:\boldsymbol{\sigma'}\right]^{\frac{1}{2}}$$

Deviatoric stress tensor = Shear = Slip = movement of dislocations

Ingredient 1: Yield criterion

von Mises (1931)

Ingredient 1: Yield Criterion

$$\sigma_{e} = \frac{1}{\sqrt{2}} [(\sigma_{11} - \sigma_{22})^{2} + (\sigma_{22} - \sigma_{33})^{2} + (\sigma_{33} - \sigma_{11})^{2} + 6(\sigma_{12}^{2} + \sigma_{23}^{2} + \sigma_{31}^{2})]^{\frac{1}{2}}$$

$$\sigma_{e} = \frac{1}{\sqrt{2}} [2 \sigma_{zz}^{2} + 6 \tau_{z\theta}^{2})]^{\frac{1}{2}}$$

$$\sigma_{Y} = \frac{1}{\sqrt{2}} [2 \sigma^{2} + 6\tau^{2})]^{\frac{1}{2}}$$

$$\left(\frac{\sigma}{\sigma_{Y}}\right)^{2} + 3\left(\frac{\tau}{\sigma_{Y}}\right)^{2} = 1$$

Taylor, G.O. and H. Quinney. 1931. The plastic distortion of metals. Phil. Trans. R. Soc., London A230:323

Ingredient 2: Flow Rule

Ingredient 1 = conditions to initiate yielding

 $d\boldsymbol{\varepsilon}^p$

 $d\varepsilon_1^p$

X

- Ingredient 2 = direction of plastic flow
- Normality hypthesis = associated flow

Consistency conditionvon Mises Material

Tangent to the yield surface

KU LEUVEN

Loading point

Normality Hypothesis: Validation¹

¹ Hakoyama et al., Material Modeling of High Strength Steel Sheet Using Multi-axial Tube Expansion Test with Optical Strain Measurement System, ESAFORM 2013

Ingredient 3: Strain hardening law

Assume linear strain hardening (Ingredient 3):

von Mises (Ingredient 1) and Flow rule (ingredient 2):

$$d\boldsymbol{\varepsilon}^p = \frac{3}{2} d\varepsilon_e^p \frac{\boldsymbol{\sigma}'}{\boldsymbol{\sigma}_e}$$

$$d\boldsymbol{\varepsilon}^p = \frac{3}{2} \frac{d\sigma_e}{H\sigma_e} \boldsymbol{\sigma}'$$

Analysis: step 1

Analysis: Step 2

$$(d\varepsilon_{zz}^{pl})_{step 2} = \frac{d\sigma_e}{H(\sigma_e)_{step 2}} \cdot \sigma_{zz}$$

$$(\sigma_e)_{step 1} = \sigma_{zz}$$
$$(\sigma_e)_{step 2} = \frac{1}{\sqrt{2}} \left[2(\sigma_{zz})^2 + 6(\tau_{z\theta}^2) \right]^{\frac{1}{2}}$$

$$\rightarrow d\sigma_e \approx (\sigma_e)_{step 2} - (\sigma_e)_{step 1} > 0$$

$$\rightarrow (d\varepsilon_{zz}^{pl})_{step \ 2} > 0$$

Analysis: Step 2

Computational J2 plasticity

✓ von Mises + *strain hardening behavior*

Computational J2 plasticity

✓ von Mises + *strain hardening behavior: Swift*

Computational J2 plasticity

✓ von Mises + *strain hardening behavior*

FE Analysis: Step 2

FE Analysis: improve understandig

FE Analysis: support innovation

¹Becker et al., Fundamentals of the incremental tube forming process, CIRP Annals – Manufacturing Technology 63 (2014) 253-256

Effort and predictive accuracy

Engineering practice: keep things simple

Plasticity

Ductile failure criterion

...but not simpler: Fracture Prediction HET

Hole Expansion Test

...but **not simpler:** Fracture Prediction HET^{1,2}

KU LEUVEN

Hole Expansion Forming Using Forming Limit Stress Criterion, ESAFORM Conference 2017, Dublin.

General Approach

Effort and predictive accuracy

Minimize time-to-market

 $MGI^{1} =$ effort to discover, manufacture, and <u>deploy advanced materials</u> twice as fast, at a fraction of the cost.

Strategic Goal: Integrate Experiments & Computation

- ✓ Reducing traditional testing by leveraging an existing material test
- \checkmark Enhance the synergy between experiments and computational methods

KU LEUVEN

¹Materials Genome Initiative https://www.mgi.gov/

Multi-Scale Approach

Mircostructurally-informed constitutive modeling¹

Mircostructurally-informed constitutive modeling¹

Mircostructurally-informed constitutive modeling

Mircostructurally-informed constitutive modeling

Mircostructurally-informed constitutive modeling

Plastic material response

the result of synergistic effects

- Loading conditionsEnvironmental conditions
- Microstructure

Synergistic effects during diffuse necking

Plastic material response can be complex...

Differential work hardening Bauschinger effect Strain rate sensitivity Kinematic hardening Ductile Damage

Plastic material response can be complex...

Differential work hardening Bauschinger effect Strain rate sensitivity Kinematic hardening Ductile Damage **L**

Isotropic work hardening

Differential work hardening

Problems

□ Many models exist

Anisotropic Yield Functions

Hill 1948
Hill 1990
Gotoh
Barlat Yld2000-2d
Barlat Yld2004
Yoshida
BBC2005

BBC2008
Vegter Spline
Karafills-Boyce
CPB2006
...

Coupled Damage Models

Model - Author	Yield function
Gurson - [7]	$\Phi = \left(rac{\sigma_{eq}}{\sigma_0} ight)^2 + 2f \cosh\left(rac{3p}{2\sigma_0} ight) - 1 - f^2 = 0$
G&T - [8]	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 + 2q_1 f \cosh\left(q_2 \frac{3p}{2\sigma_0}\right) - 1 - q_1^2 f^2 = 0$
S&W - [119]	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 + \left(2 - \frac{1}{2}\log(f)\right)f\cosh\left(\frac{3p}{2\sigma_0}\right) - 1 - f(1 + \log(f)) = 0$
VAR - ([109, 112–114])	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 \left(1 + \frac{2}{3}f\right) + f\left(\frac{3p}{2\sigma_0}\right)^2 - (1 - f)^2 = 0$
MVAR - ([111])	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 \left(1 + \frac{2}{3}f\right) + f\left(\frac{1-f}{\sqrt{f}\log(1/f)}\right)^2 \left(\frac{3p}{2\sigma_0}\right)^2 - (1-f)^2 = 0$
G&S - ([118])	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 \left(1 + \frac{2}{3}f\right) + 2f\cosh\left(\frac{3p}{2\sigma_0}\right) - 1 - f^2 = 0$
GVAR - ([117])	$\Phi = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 \left(1 + \frac{2}{3}\alpha_g f\right) + 2q_1 f \cosh\left(q_2 \frac{3p}{2\sigma_0}\right) - 1 - q_1^2 f^2 = 0$

Implementation = stress reconstruction

Stress update algorithm

<u>Unified</u> <u>Material</u> <u>Model</u> <u>Driver for</u> <u>plasticity</u>¹

¹JANCAE, The Japan Association for Nonlinear CAE

Finite Element Model Updating (FEMU)

Finite Element Model Updating (FEMU)

Virtual Fields Method

Global Equilibrium
$$-\int_V \sigma(\mathbf{p}, \mathbf{\epsilon}) \cdot \mathbf{\epsilon}^* dV + \int_{\partial V} \mathbf{T} \cdot \mathbf{u}^* dS = 0$$

Energy Method

$$C(\boldsymbol{p}) = \frac{1}{2} \sum_{j=1}^{m} \left[W_{int,j}(\boldsymbol{p}) - W_{ext,j} \right]^2$$

Energy Method

During a quasi-static test the internal work equals the external work

Forming Limit Curve

Forming Limit Curve*

* Junying Min et al., Compensation for process-dependent effects in the determination of localized necking limits, International Journal of Mechanical Sciences117(2016)115–134