Southampton

School of Engineering Sciences

Application of Strain Gauge Techniques in the Measurement of the Coefficients of Thermal Expansion

Janice Dulieu-Barton, Shamala Sambasivam, Simon Quinn janice@soton.ac.uk

Summary

- Why?
- Composite materials
- Importance in experimental mechanics
- Derivation from strain gauges
- Reliability and uncertainty

Motivation

- Accurate derivation –large variations in values in literature for nominally identical materials
- Crucial in understanding the thermal stress conducting work at elevated or varying temperatures
- Particularly important in composite materials variations depend on manufacturing process etc
- Essential in the interpretation of data from experimental mechanics techniques

Experimental techniques

- Thermoelastic stress analysis (TSA)
- Digital image correlation (DIC)
- Acoustic emission
- Electronic speckle pattern shearing interferometry (ESPSI)
- Optical fibre sensors (FBGs on silica and polymers)

Thermoelastic stress analysis

Micrographs of typical composites

Carbon/epoxy 8 μ m Silicone carbide/glass Glass/epoxy 25 μ m $V_f = 70\%$ 15 μ m $V_f = 66\%$ $V_f = 66\%$

Typical glass and epoxy material properties

	Young's Modulus (GPa)	Poisson's Ratio
Fibre	72.4	0.20
Matrix	2.97	0.44

$$E_{1} = E_{1f}V_{f} + E_{m}(1 - V_{f})$$
$$v_{12} = v_{12f}V_{f} + v_{m}(1 - V_{f})$$

Young's modulus

Coefficients of thermal expansion α_1 and α_2

$$\alpha_{1} = \frac{\alpha_{f}E_{f}V_{f} + \alpha_{r}E_{r}(1 - V_{f})}{E_{f}V_{f} + E_{r}(1 - V_{f})}$$

$$\alpha_2 = \alpha_f (1 + v_f) V_f + \alpha_r (1 + v_r) (1 - V_f) - \alpha_1 v_{12}$$

Coefficient of thermal expansion

Putruded materials

Comparison of FEA and TSA

Comparison between FEA and TSA

Sandwich structures and core junctions

Type	Face Material	t_f [mm]	width [mm]	Core Material 1	Core Material 2	Core Material 3
1	Aluminium alloy	1.0	45.6	Aluminium alloy	Rohacell 51WF	Rohacell 200WF
2	PMMA	1.5	47.2	PMMA	Dynathane 1000	Rohacell 51WF
3	GFRP-CSM	1.2	46.8	PMMA	Dynathane 1000	Rohacell 51WF
4	GFRP-NCF	2.8	49.0	Aluminium alloy	Rohacell 51WF	Rohacell 200WF

Loading configuration

Stresses in face sheets

Principles of measuring the CTE

- Thermal expansion (temperature induced strain) material response to change in the temperature
- As the thermal strain in the material changes, output of the strain gauges changes accordingly
- Challenge : resistivity of the strain gauge grid changes with temperature, additional resistance change occurs because the expansion of the strain gauge grid alloy
- "The output from the strain gauge is a combination of resistance changes from the material and the grid"

Principles of the technique

Solution: a strain gauge is installed on a specimen (test material) of unknown expansion coefficient α_{Specimen} and same type of gauge installed on a standard reference material with a known expansion coefficient α_{Pedepevye}

$$\varepsilon_{\rm S} = \left[\frac{\beta_{\rm G}}{F_{\rm G}} + (\alpha_{\rm s} - \alpha_{\rm G})\right] \Delta T \quad \text{specimen}$$
$$\varepsilon_{\rm R} = \left[\frac{\beta_{\rm G}}{F_{\rm G}} + (\alpha_{\rm R} - \alpha_{\rm G})\right] \Delta T \quad \text{Reference} \\ \text{specimen}$$

$$\varepsilon_{\rm R} - \varepsilon_{\rm S} = \left[\left(\alpha_{\rm R} - \alpha_{\rm S} \right) \right] \Delta T$$

 β_G thermal coefficient resistivity of grid material F_G gauge factor of strain gauge

Experimental setup

- Specimens: Unidirectional composite specimen (test specimen), Copper Specimen (reference)
- Type K thermocouple (Sensitivity is approximately 41 μ V/° C)
- Data logger : Vishay strain smart system
- Temperature ramp rate : 1°C/Min

School of Engineering Sciences

Test results

- CTE in the principal material direction of the composite, α_i (i= 1,2) α_{ref} = 17 x $10^{-6}/^{o}C$

Thermal expansion of composites

• Comparison of experimental data and external resources

Specimen	α ₁ (10 ⁻⁶ /°C)	α ₂ (10 ⁻⁶ /°C)	External data
Ероху	57 <u>+</u> 0.13	-	50-60*
Uni-directional	9 <u>+</u> 0.11	31 <u>+</u> 0.16	8.6 and 22.1**
Cross Ply	10.59 <u>+</u> 0.31	-	-
Angle Ply	16.2 <u>+</u> 0.28	-	-
Quasi-Isotropic	9.25 <u>+</u> 0.34	-	-

- Strain gauge type: CEA-06-125UT-350
- Error analysis : Copper as a reference material (\pm 0%), strain gauges (0.1-0.5%), thermocouple type K (\pm 2.2°C)
- Total experimental error = 5.04%

Conclusions

- Shown that the CTE is an important quantity in stress/strain anlysis
- Demonstrated the variability in CTEs for composite materials
- Shown how this can be measured with reasonable accuracy using a simple set-up and standard strain gauges