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DIVISION OF SoLID MECHANICS @ LTH

Research areas: constitutive modeling, computational

mechanics and experimental mechanics:

* microstructure mechanics, recrystallization, phase
transformations, large strain plasticity, viscoplasticity, texture
development, coupled physical phenomena, smart materials,
electroactive polymers, geomaterials, diffusion processes
and structural optimization...

Application areas: polymers, metals, granular materials,
fibre materials, bio-materials and more

Experimental mechanics: analysis of mechanical properties |
including multi-scale and multi-physics couplings and
development of full-field measurement methods:

« DIC, x-ray & neutron imaging & scattering...

» Close link to model development




GENERAL EXPERIMENTAL RESEARCH APPROACH

Investigation of the mechanics of (heterogeneous) deformation and
failure in materials using full-field methods with different
sensitivities to different physical properties, to characterise different
aspects of the mechanical processes:

*Digital Image Correlation (DIC)
«X-ray tomography

*Neutron tomography

3D Digital image analysis
*Digital Volume Correlation
*Ultrasonic tomography

*Neutron and X-ray Scattering

*Acoustic emissions

*With a view towards defining the characteristics to include in (enriched) modelling



Experimental Mechanics
@Division of Solid Mechanics

Surface DIC systems:

29 MPx @ 4 Hz

1 Mpx @ 500 Hz

Correlated solutions VIC3D software
In-house 2D-DIC code

. 4D IMAGING LAB
Volume imaging: \ (R e e s o
*In-house x-ray tomograph (Zeiss XRM520) (¥
«X-ray and neutron tomography at large-
scale facilities

Digital Volume Correlation (DVC)
- In-house DVC code: TOMOWARP2
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EXPLORING POLYMER MECHANICS OVER
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EXPLORING POLYMER MECHANICS OVER MULTIPLE SCALES

Objectives

* Investigate the coupling between deformation mechanisms at the
molecular-, micro- and macro-scales in polymers

« To develop more accurate, physically-based constitutive models
« Glassy polycarbonate (PC)

« Semi-crystalline HDPE
« Block co-polymers (SEBS)
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EXPLORING POLYMER MECHANICS OVER MULTIPLE SCALES

Glassy polycarbonate (PC)

 Amorphous, glassy polymer

« Initially isotropic and homogeneous

* Development of significant heterogeneity
(localised deformation) with loading

« Evolving anisotropy

» Multi-scale processes

1. physical entanglement
2. N rigid links between
entanglements

3. intermolecular interaction

Boyce et al. Mech. of Materials (1988)

The BPA model es

» Polymer model

» Proposed by Boyce, Parks and -
Argon (1988)

» |dealised chain network
consisting of eight chains
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EXPLORING POLYMER MECHANICS OVER MULTIPLE SCALES

Methods

« Tensile loading: “averaged” stress-strain
response of the sample

« 3D-surface DIC: local “macroscopic” strain
field and sample thickness evolution

- Small- and Wide-angle scattering
(SAXS/WAXS: structures from about 100
nm down to a few Angstrom (with spatial
resolution)

Detector tube
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« Simultaneous measurements to relate

measurements across scales (DIC
triggered with SAXS/WAXS)
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« Spatial resolution to capture
heterogeneity
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EXPLORING POLYMER MECHANICS OVER MULTIPLE SCALES

3D-surface Digital Image Correlation

« Measurement of surface displacement fields

* |In-plane and out of plane displacements
« Strain fields - strain heterogeneity

» Local measures of strain to relate to x-
ray scattering measurements
(macroscopic strain is at best a global
average measure)

» Understanding of meso-scale failure
mechanisms (strain localisation)

« Thickness changes of sample to correct
scattering measurements (accounting for
varying sample attenuation with change in
sample thickness)




EXPLORING POLYMER MECHANICS OVER MULTIPLE SCALES
X-ray scattering

2D-detector

X-ray scattering

Bragg's law
n\ = 2dsinf 6‘0"*"’6\
e
Length of the scattering vector Scz“e‘
5 Specimen \ 26
m
q = F / I

Incoming beam

- information about the shape and size of

macromolecules, characteristic distances Random har i
of partially ordered materials, pore sizes, ¢
and other data. @ ( a ) ¥ ; .
- structural information of macromolecules s @
between <1 nm and 25 nm, of repeat .
distances in partially ordered systems of -Dispersions Fibres Single Crystal
-Powders -Sheared Liquids

up to 150 nm



Experiments:

» 1911-SAXS beamline at MAX IV Laboratory, Lund University
» Custom built uniaxial tensile test machine
» 29 MPx stereo DIC system

DIC cameras

Tensile testing machine
7 (mounted on translation stage) |

. - .

Engquvist et al., 2014
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Experiments: set-up

Load Cell

Moving
grips

Specimen

Displacement

) C ) C$5mm transducer

(LVDT)

<>

; _ 8 mm
Thickness = 5mm ¢ S

20 mm

Engquvist et al., 2014



Experiments: set-up

Thickness = 5mm

Load Cell ) C ) C$5mm
Moving
grips
Specimen 8<:n>m
Somm

Displacement
transducer
(LVDT)

*Speckle applied with
water-based paint (white
then black speckle)

*Gap left for SAXS/WAXS
to avoid scattering from
paint

Engquvist et al., 2014



Experiments: DIC + in-situ loading

Undeformed Load step 1 Load step 2 Load step 3 Load step 4 Load step 5
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Experiments: SAXS + DIC + in-situ loading
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Experiments: SAXS + DIC + in-situ loading

Note: SAXS data corrected for thickness change based on DIC

SAXS parallel to loading SAXS perpendicular to loading
(a) — Undeformed (D) —— Undeformed
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Experiments: SAXS + DIC + in-situ loading
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Experiments: SAXS + DIC + in-situ loading
« Strain Anisotropy vs SAXS anisotropy

Undeformed Load step 1 Load step 2 Load step 3 Load step 4 Load step 5
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« Colour = DIC strain (g4)

« White arrows ¢, direction

» Black arrows SAXS principle
direction
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Experiments: SAXS + DIC + in-situ loading
« Strain Anisotropy vs SAXS anisotropy
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Experiments: WAXS + DIC + in-situ loading

Engquvist et al., 2015, submitted



Experiments: DIC + in-situ loading

o Engqvist et al., 2015, submitted
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Experiments: DIC + in-situ loading

o Engqvist et al., 2015, submitted
Principal stretches
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Experiments: WAXS + DIC + in-situ loading

Engquist et al., 2015, submitted
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Experiments: WAXS + DIC + in-situ loading
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Experiments: WAXS + DIC + in-situ loading

WAXS: point A

Line scan 0 Line scan 20 Line scan 27 Line scan 40 Line scan 61 Line scan 79 Line scan 99

Peak fitting

) \ Peak 1: correlations between consecutive
—_ | carbonate groups along the chain
g « (q=6.2nm-1,d=1.0 nm);
: Peak 2: correlations between neighbour chains
‘é 1 - * (g=11.8nm-1,d =0.53 nm);
3 Peak 3: correlations between closely
= .. " :
= positioned entities along the chain

* (q=12.7nm-1,d = 0.49 nm);
0 N

Peak 4: a mixture of inter- and intramolecular
correlations
* (g=18nnm-1,d =0.35 nm).

Engqvist et al., 2015, submitted



Experiments: WAXS + DIC + in-situ loading

WAXS: point A

Line scan 0 Line scan 20 Line scan 27 Line scan 40 Line scan 61 Line scan 79 Line scan 99

Peak fitting

2 4
5 + Peak positions = strain
<
~ » Peak intensities - number
é | of scatterers, anisotropy
ié « Peak width - spread of q

values
0 ,
0

Engqvist et al., 2015, submitted



Multi-scale strain measurements: WAXS + DIC
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Multi-scale Deformation of Polycarbonate Using X-ray
Scattering with In-situ Loading and Digital Image

Correlation
Wide angle ,'
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« Tensile loading: “averaged” stress-strain response of the sample
» DIC: local “macroscopic” strain field

« SAXS and WAXS: structures from about 100 nm to a few Angstrom
« Scanning to get spatial resolution

Engqvist et al., 2015, submitted



NEW MODEL FOR AMORPHOUS POLYMERS

» Elasto-plastic model with inclusion of evolving
orientation-distribution function

* Developed independently from experiments, but
calibrated to “homogeneous” test data (macroscopic)

Engquist et al., 2016, in preparation



NEW MODEL FOR AMORPHOUS POLYMERS

» Elasto-plastic model with inclusion of evolving
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NEW MODEL FOR AMORPHOUS POLYMERS

« Simulation of experiments:

Stretch fields
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SUMMARY

» Spatially-resolved measurements are essential to capture material
and process heterogeneity

 Different measurement approaches can provide different details on
the material behaviour

* |n this case

* DIC has been used to characterise local strains and strain
heterogeneity)

 Also provides essential information on sample thickness changes

» X-ray scattering allows nano/micro-structural length scale
evolution to be captured

» Essential to have spatial resolution
» Essential to also have appropriate local strain measures

* Next steps include enhancing link to modelling (beyond qualitative
verification)



