On the investigation of free edge effects in composites using full field measurements

P. Lecomte-Grosbras (EC-Lille) B. Paluch (ONERA), M. Brieu (EC-Lille)

Context : delamination

- Extensive use of composite materials
- design of composite structures globally well mastered
- Free edge and junctions : delamination problems

15°/-15° interface

Ply drops

Context: free edge effects

Objectives

- Experimentally study free edge effects at mesoscopic scale
- Investigate the behaviour and the micro-mechanisms in the vicinity of interlaminar interfaces
- Highlight the influence on free edge effects of microstructure heterogeneities and geometrical singularity

Summary

Experimental Procedure

Free edge effects and damage micro-mechanisms

Microscopic observations

Influence of structural and microstructural heterogeneities

Microstructure heterogeneities (quasi-UD laminates)
Geometrical singularity (laminates with ply drops)

Conclusions

Summary

Experimental Procedure

Free edge effects and damage micro-mechanisms

Microscopic observations

Influence of structural and microstructural heterogeneities

Microstructure heterogeneities (quasi-UD laminates)
Geometrical singularity (laminates with ply drops)

Conclusions

Effect of material microstructure

Quasi-UD-HS

BSSM-NPL-London - 8/28

Uniaxial tensile tests with loading and unloading steps

DIC Technique and cameras characteristics

Resolution (pixels)	1024 x 1368	2048 x 2736
Dynamique (bits)	10	12
(L,D) pixels	(30,20)	(60,40)

Measurements uncertainties

Expected displacements < 20µm (camera recentred on initial observation area)

- Standard deviation calculation for $U_i = 20 \ \mu m$
- Displacements uncertainties < 0.02 µm
- Strain uncertainties < 0.1%

Direct use of microstructure to DIC measurements

Summary

Experimental Procedure

Free edge effects and damage micro-mechanisms

Microscopic observations

Influence of structural and microstructural heterogeneities

Microstructure heterogeneities (quasi-UD laminates)
Geometrical singularity (laminates with ply drops)

Conclusions

DIC results at mesoscopic scale under tensile strain

- High u_x displacements gradients and ϵ_{xz} shear strain concentrations
- Non linear variation of ϵ_{xz} as a function of < ϵ_{xx} >
- \rightarrow and after sample unloading?

Cracks located at fibre/matrix interfaces

Summary

Experimental Procedure

Free edge effects and damage micro-mechanisms

DIC measurements at mesoscopic scale

Microscopic observations

Influence of structural and microstructural heterogeneities

Conclusions

Influence of structure and microstructure

BSSM-NPL-London - 25/28

Influence of structure and microstructure

Influence of a geometrical singularity (ply drops)

Material

Material	UD-HM
Stacking sequences	$[(15_2/-15_2)_2]_s$ and $[0]_{16}$
Mean ply thikness (mm)	0.100

Optical parameters

Caméra Resolution (px)	2048 x 2736
Pixel size(µm)	0.21
(L,D) (px)	(60,40)

Influence of structure and microstructure

BSSM-NPL-London - 27/28

Conclusions

Experimental free edge study

Experimental procedure

• DIC measurements at mesoscopic scale

Free edge effect and damage micro-mechanisms

- Shear strain concentration
- Residual displacements gradients at mesoscopic scale
- Damage at microscopic scale

Structural and microstructural influence on edge effects

On the investigation of free edge effects in composites using full field measurements

P. Lecomte-Grosbras (EC-Lille) B. Paluch (ONERA), M. Brieu (EC-Lille)

