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SICOMP – where we are and what we do

Swerea SICOMP

Swedish non-profit institute for research 
on polymer composites.

Owners: Industry 51%, Government 49%

Staff: 30

Member of Swerea – a group of
Swedish materials research institutes.

UK
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Imperial College
2003 - 2008

Most of the present work was done at
Imperial College London
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Impact threats on composite structures

AIRBUS A350 BOEING 787

Dropped toolsBird strikeRunway debris Hail stones
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Impact damage 
happens easily

Often invisible by 
naked eye inspection

Complex damage affecting all plies
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Stiffness distribution in 
damage zone is crucial

Davies & Olsson (2004) 
The Aeronautical J.
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Initial studies of stiffness of impact damage
Coupons cut from damage zone

Tensile stiffness distribution
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Drawbacks

• Destructive method

• Properties only obtained in discrete points

• Free edges cause premature tensile cracking

• Strip specimens buckle very prematurely

Sjögren, Krasnikovs, Varna (2001). Composites A
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In-situ full field measurement of damage

Advantages

• Potentially non-destructive method

• Full field description of damage zone

• Entire range of in-situ behaviour 
measured

Disadvantage

• Numerical inverse methods required for 
evaluation
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Inverse method – our approach

E0
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Optical measurements on 
loaded impacted specimen

Inverse method with 
optimization routine 

Matching of 
displacements

Displacement fields in loaded specimen 
measured by Digital Image Correlation (DIC)
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Flowchart of the approach

Iterative updating of material parameters 
in Finite Element model

Sztefek & Olsson (2008), Composites Part A.
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Digital image correlation system at IC

Non-contact optical 3D deformation measuring system

Speckle pattern Before deformation During deformation

DIC Principle

0.05% up to <100%Strain range

up to 0.02%Strain accuracy

12 HzMax. frame rate

10 ×××× 8 ×××× 8 mm 3 to
1.7 ×××× 1.4 ×××× 1.4 m3Measuring volume

1280 ×××× 1024 pixelsCamera resolution

4 cameras in master and slave mode

GOM ARAMIS 1.3 MSystem type



9 March, 2010 Robin Olsson 10

Overview of experiments

Impact testing

Impactor

Boeing rig

Quasi-isotropic
Carbon/epoxy

Field of DIC
measurement
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Tension – inverse analysis
FE analysis
• Homogeneous isotropic thin shell
• Full-field boundary conditions

0

1

2

3

4

5

6

7

-40 -30 -20 -10 0 10 20 30 40

y-coordinate (mm)

N
or

m
al

is
ed

 S
tra

in
, 

εε εεx
 (%

)

0.30% 

0.40%

0.85%

7 J2 mm

7 J

∅∅∅∅ 18 mm

2 mm

∅∅∅∅ 8 mm

∅∅∅∅ 14 mm

∅∅∅∅ 4 mm

εεεεx   (%)

2.0

1.5

1.0

0.5

0

□
70

 m
m

x

y



9 March, 2010 Robin Olsson 12

Tension – results
2 mm, 5 J                                            2 mm, 7 J
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Sztefek & Olsson (2008). Composites Part A
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Tension – nonlinear material behaviour
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Experimental setup in compression
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Finite element model in compression

FE analysis
• Homogeneous isotropic thin shell
• Geometrically nonlinear analysis
• Full-field boundary conditions

IN-PLANE and OUT-OF-PLANE BCs

OUT-OF-PLANE BCs only

4 mm 10 J 14 J4 mm 20 J4 mm

?

∅ 36 mm∅ 32 mm∅ 26 mm
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Apparent material nonlinearity in compression
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Sztefek & Olsson (2009). Composites Part A
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Structural FE model of impact damage

Behaviour of damaged ply

Simplified model Equivalent model

σσσσ

εεεε

Realistic damage
• Determine structural behaviour by detailed analysis

• Then represent damage by nonlinear element
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Sufficient to model cracks and delaminations by reg ular pattern

Too local influence Too extensive influence Realistic  influence

FE-model of impact damage in tension

Generic 

damage

2 mm, 8 ply

laminate

Craven, Sztefek, Olsson (2008). Compos Sci Technol.

Impact 

damage

2 mm, 16 ply

laminate
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FE-model of impact damage in compression

Damage 3D geometry

Assumed damage patterns

Craven, Iannucci, Olsson (2010). Composites A
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Possible future development

• Determination of flexural stiffness by out-of-plane l oading

• Measurement on ground to support decisions on need fo r repair

• Measurements in flight to support decisions on maintena nce

• In-vivo measurement of nonlinear biological tissue

Related work by Kim, Pierron, Wisnom and Syed-Muhamad (2007)

• Local flexural stiffness determined by out-of-plane  loading 
and measurement of slopes 

• Direct inverse method (Virtual fields method) used

• Polynomial smoothing limited stiffness gradients


