

Stiffness of impact damage zones in composites measured by full field methods

Robin Olsson

Seminar organised by BSSM NPL, Teddington, UK, 11th March 2010

SICOMP – where we are and what we do

Swerea SICOMP

Swedish non-profit institute for research on polymer composites.

Owners: Industry 51%, Government 49%

Staff: 30

Member of *Swerea* – a group of Swedish materials research institutes.

Most of the present work was done at Imperial College London

Outline of presentation

Impact threats on composite structures

Problem of impact damage on composites

Initial studies of stiffness of impact damage

Coupons cut from damage zone

Sjögren, Krasnikovs, Varna (2001). Composites A

Tensile stiffness distribution

Drawbacks

- Destructive method
- Properties only obtained in discrete points
- Free edges cause premature tensile cracking
- Strip specimens buckle very prematurely

In-situ full field measurement of damage

Advantages

- Potentially non-destructive method
- Full field description of damage zone
- Entire range of in-situ behaviour measured

Disadvantage

• Numerical inverse methods required for evaluation

Inverse method – our approach

Iterative updating of material parameters in Finite Element model

Displacement fields in loaded specimen measured by Digital Image Correlation (DIC)

Digital image correlation system at IC

Non-contact optical 3D deformation measuring system

System type	GOM ARAMIS 1.3 M
4 cameras in master and slave mode	
Camera resolution	1280 × 1024 pixels
Measuring volume	$10 \times 8 \times 8 \text{ mm}^3$ to $1.7 \times 1.4 \times 1.4 \text{ m}^3$
Max. frame rate	12 Hz
Strain range	0.05% up to <100%
Strain accuracy	up to 0.02%

Speckle pattern

Before deformation

DIC Principle

Overview of experiments

Tension – inverse analysis

FE analysis

70 mm

- Homogeneous isotropic thin shell
- Full-field boundary conditions

swerea sicomp

9 March, 2010 Robin Olsson

Tension – results

Sztefek & Olsson (2008). Composites Part A

Tension – nonlinear material behaviour

Experimental setup in compression

Finite element model in compression

FE analysis

- Homogeneous isotropic thin shell
- Geometrically nonlinear analysis
- Full-field boundary conditions

Apparent material nonlinearity in compression

Sztefek & Olsson (2009). Composites Part A

Structural FE model of impact damage

Realistic damage

Behaviour of damaged ply

Simplified model

- Determine structural behaviour by detailed analysis
- Then represent damage by nonlinear element

Equivalent model

FE-model of impact damage in tension

Sufficient to model cracks and delaminations by regular pattern

Craven, Sztefek, Olsson (2008). Compos Sci Technol.

FE-model of impact damage in compression

Damage 3D geometry

c)

a)

h

Circle

Delaminatio

No Cracks

swerea sicomp

Craven, Iannucci, Olsson (2010). Composites A

Elliptical

Delamination

Line Crack

Twin Elliptical

No Cracks

Possible future development

- Determination of flexural stiffness by out-of-plane loading
- Measurement on ground to support decisions on need for repair
- Measurements in flight to support decisions on maintenance
- In-vivo measurement of nonlinear biological tissue

Related work by Kim, Pierron, Wisnom and Syed-Muhamad (2007)

- Local flexural stiffness determined by out-of-plane loading and measurement of slopes
- Direct inverse method (Virtual fields method) used
- Polynomial smoothing limited stiffness gradients