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» Sandwich Panels - Faceplates

> High Young’s Modulus
» High Tensile and Compressive Strength

» High Impact Resistance

Core Material

Fibre Reinforced
Plastics

Steels, including
Stainless Steels

Aluminium




» Sandwich Panels — B dowedrCOuedMdtivalls

> Sintered Networks of Metallic=h
> LOW DenSIty Core Material
> Relatively High Stiffness (Perpendicular to the plane of the faceplates)

» Relatively High Shear Modulus




» Lightweight Sandwich Panels with Metallic Fibre Cores
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» Lightweight Sandwich Panels with Metallic Fibre Cores
» Manufacture & Handling
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> Fibre Network Characterisation
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> Fibre Network Characterisation

Clyne-Markaki Model
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» Impact Test Facilities
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Velocity Measurement

Gas Gun Schematic
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» Experimental Programme

» 8 mm Diameter Projectile
» 2 g Mass

» Hardened Steel — Martensitic
Outer Layer

» Impact Speeds ~ 80-600 m/s




» Numerical Modelling
» Faceplate Material Model

Strain Rate .

Stress
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» Numerical Modelling
» Core Material Model — VUMAT Sub-routine (Zhou & Louca)

Elastic Properties:

Shear Stress

Young’s Moduli

Poisson’s Ratios

Plastic Properties:

Stress v Strain Curves

Fracture Criterion:

Critical Shear Stress

Shear Strain

» VUMAT sub-routine
* Anisotropic Compressible Continuum
e Quadratic Shear Stress-based Failure Criterion
* No Flow Stress Rate-Dependence

* No Fracture Strain Rate-Dependence
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> Single Faceplates — Experiments and Predictions

—O— Experimental Data
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> Single Faceplates — Experiments and Predictions
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> Single Faceplates — Experiments and Predictions
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> Single Faceplates — Experiments and Predictions l

—O— Experimental Data
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> Single Faceplates — Experiments and Predictions l

O Experimental Data
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» Single Faceplates — Experiments and Predictions l

O Experimental Data
----- Impact Energy Curve
Predicted - Johnson & Cook (Strain Rate Included)
Predicted - von-Mises (Strain Rate Included)

50
O

40 @ B . . .
_ - High Velocity Regime
5
>
= 30 - -
c
w
©
o
2 20 - -
2
e @
< ~__ /_/////

10 - | — -

0 | | | | | |

Impact Velocity (m/s)




Maximum In-Plane Strain Rate (s'1)

-
o
(6]

-
o
IS

1000

100

-
o

» Single Faceplates — Experiments and Predictions
» Inadequate Strain Rate-Dependent Material Property Data?
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Yield Stress Ratio (R)
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» Single Faceplates — Experiments and Predictions

» High Strain Rate Material Behaviour

von-Mises Plasticity
Hardening Behaviour - Yield Stress Ratio
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» Single Faceplates — Experiments and Predictions l

» High Strain Rate Material Behaviour

von-Mises Plasticity
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» Single Faceplates — Experiments and Predictions l

» High Strain Rate Material Behaviour

von-Mises Plasticity

Hardening Behaviour — Yield Stress Ratio
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» Single Faceplates — Experiments and Predictions l

» High Strain Rate Material Behaviour

von-Mises Plasticity

Hardening Behaviour — Yield Stress Ratio
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» Single Faceplates — Experiments and Predictions l

» High Strain Rate Material Behaviour

von-Mises Plasticity
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» Single Faceplates — Experiments and Predictions
> High Strain Rate Material Behaviour l

Johnson & Cook Plasticity
Hardening Behaviour — Hardening Constant (C)
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» Single Faceplates — Experiments and Predictions
> High Strain Rate Material Behaviour l

Johnson & Cook Plasticity
Hardening Behaviour — Hardening Constant (C)
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» Single Faceplates — Experiments and Predictions
> High Strain Rate Material Behaviour l

Johnson & Cook Plasticity
Hardening Behaviour — Hardening Constant (C)
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» Single Faceplates — Experiments and Predictions
> High Strain Rate Material Behaviour l

Johnson & Cook Plasticity
Hardening Behaviour — Hardening Constant (C)
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» Single Faceplates — Experiments and Predictions l

@

» High Strain Rate Material Behaviour
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* Dislocation Drag?

» Deformation Twinning?

 Martensitic Transformations?




» Sandwich Panels — Experiments and Predictions l
» Low Velocity Impact (<200 m/s)

All simulations conducted here have used the
Johnson & Cook Plasticity Algorithm
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» Sandwich Panels — Experiments and Predictions
» High Velocity Impact (>200 m/s)
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» Sandwich Panels — Experiments and Predictions l
» High Velocity Impact (>200 m/s)
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» Sandwich Panels — Experiments and Predictions l
» High Velocity Impact (>200 m/s)
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Absorbed Energy (J)

» Sandwich Panels — Experiments and Predictions l
» High Velocity Impact (>200 m/s)
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» Sandwich Panels — Experiments and Predictions l

» Specific Absorbed Energy

Consider the Specific Absorbed Energy
(Normalised by Areal Density)
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» Conclusions

* A lightweight sandwich panel with a metallic fibre core has been fabricated
* Can be handled in a manner similar to that of monolithic sheet
» Can be resistance welded

* Is comparatively cheap

*The core architecture can be characterised using x-ray microtomography

* Architectural data can be used to predict elastic (and yield stress) mechanical properties —
Clyne & Markaki Model

« The capacity of the sandwich panels to absorb energy when struck (at normal
incidence) by spherical projectiles has been investigated

* When normalised by areal density, the sandwich panels are no more effective at absorbing
energy than a single faceplate (at low and intermediate projectile velocities)

» At high projectile velocities, single faceplates absorb more energy (on a weight-for-weight
basis) than the sandwich panels due to plastic compression of the core which mitigates the
favourable (energy absorption) strain rate-hardening characteristics of the faceplate material




» Conclusions

» A sandwich panel finite element model has been developed

» The faceplates were modelled as elastic-plastic solids with a strain rate-dependent, critical
plastic strain failure criterion

* The core material was modelled as an anisotropic crushable continuum with a quadratic
shear stress failure criterion (VUMAT sub-routine — Zhou and Louca)

* Predictions and experimental data are in close agreement

» The predictive FE capability must now be utilised to optimise the core material
» Exploit rate-hardening characteristics of the faceplate material
Simultaneously

» Improve the energy-absorbing performance of the core material




