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Ø Sandwich Panels - Faceplates

Ø High Young’s Modulus
Ø High Tensile and Compressive Strength
Ø High Impact Resistance

Aluminium Fibre Reinforced 
Plastics

Steels, including 
Stainless Steels



1.5 cm

Ø Sandwich Panels – Common Core MaterialsØ Sandwich Panels – A Novel Core Material

Ø Sintered Networks of Metallic Fibres

Ø Low Density

Ø Relatively High Stiffness (Perpendicular to the plane of the faceplates)

Ø Relatively High Shear Modulus



HSSA 
f~0.08

Short Fibre 3-D Array  
Brazed f~0.15 

Short Fibre 3-D Array  
S.S Sintered f~0.15

• 0.2 mm thick 304 Faceplates
• 304 fibres

•~60 μm diameter
•~5 mm length

• f~0.15

• 0.4 mm thick 304 Faceplates
• 304 fibres

•~60 μm diameter
•~5 mm length

• f~0.15

• 0.2 mm thick 316 Faceplates
• 316 fibres-Vertically Aligned

•~25 μm diameter
•~1 mm length

• f~0.08

Ø Lightweight Sandwich Panels with Metallic Fibre Cores

Present Study



Ø Lightweight Sandwich Panels with Metallic Fibre Cores
Ø Manufacture & Handling

304 Melt Spun Fibres

Length ~ 5 mm

Diameter ~ 60-100 µm

Cross section – Crescent Shaped

304 Faceplates

0.4 mm Thick

Assembly is Sintered

1195°C for 1.5 Hours

Fibre Volume Fraction ~15%

Thermocouple

Heating Elements

75 mm



15 mm
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Ø Fibre Network Characterisation
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Ø Fibre Network Characterisation



Ø Impact Test Facilities

Pressure Chambers           Barrel

Coils

Gas Gun Schematic

Velocity Measurement

Copper Coils

Pressure 
Chambers

Barrel Incident 
Velocity

Residual 
Velocity

Target and Clamp
Experimental Set-up

ClampSandwich Panel



Ø Experimental Programme

Ø 8 mm Diameter Projectile

Ø 2 g Mass

Ø Hardened Steel – Martensitic 
Outer Layer

Ø Impact Speeds ~ 80–600 m/s



Ø Numerical Modelling
Ø Faceplate Material Model

Strain
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Elastic Properties:

Young’s Modulus

Poisson’s Ratio

Plastic Properties:

Stress v Strain Curves (von-Mises) 

Johnson and Cook Plasticity

Rate Dependency:

Yield Ratio/Rate-hardening constant

Fracture Criterion:

Critical Strain



Ø Numerical Modelling
Ø Core Material Model – VUMAT Sub-routine (Zhou & Louca)

Strain
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Young’s Moduli

Poisson’s Ratios

Plastic Properties:

Stress v Strain Curves

Fracture Criterion:
Critical Shear Stress
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Ø VUMAT sub-routine
• Anisotropic Compressible Continuum

• Quadratic Shear Stress-based Failure Criterion

• No Flow Stress Rate-Dependence

• No Fracture Strain Rate-Dependence



Ø Single Faceplates – Experiments and Predictions
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Ø Single Faceplates – Experiments and Predictions
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Ø Single Faceplates – Experiments and Predictions
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Ø Single Faceplates – Experiments and Predictions
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Ø Single Faceplates – Experiments and Predictions
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Plate Mesh Beneath 
Projectile
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Ø Single Faceplates – Experiments and Predictions
Ø Inadequate Strain Rate-Dependent Material Property Data?
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour

Quasi-Static Flow Stress 
Scales as R with Strain 

Rate

von-Mises Plasticity
Hardening Behaviour – Yield Stress Ratio
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour

0

10

20

30

40

50

0 100 200 300 400 500 600

Predicted - Johnson & Cook (Strain Rate Included)

Predicted - von-Mises (Strain Rate Not Included)

Experimental Data

Predicted - von-Mises (Strain Rate Included)

Impact Energy Curve

Predicted - Johnson & Cook (Strain Rate Not Included)
Ab

so
rb

ed
 E

ne
rg

y 
(J

)

Impact Velocity (m/s)

C = 0.4

Johnson & Cook Plasticity
Hardening Behaviour – Hardening Constant (C)



Ø Single Faceplates – Experiments and Predictions
Ø High Strain Rate Material Behaviour
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• Dislocation Drag?

• Deformation Twinning?

• Martensitic Transformations?



Ø Sandwich Panels – Experiments and Predictions
Ø Low Velocity Impact (<200 m/s)
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Ø Sandwich Panels – Experiments and Predictions
Ø High Velocity Impact (>200 m/s)
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Two Spaced 
Faceplates 

(1 mm)

Sandwich Panel Back 
Faceplate

Single 
Faceplate

Ø Sandwich Panels – Experiments and Predictions
Ø High Velocity Impact (>200 m/s)



Sandwich Panel Back 
Faceplate
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Ø Sandwich Panels – Experiments and Predictions
Ø High Velocity Impact (>200 m/s)
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Ø Sandwich Panels – Experiments and Predictions
Ø Specific Absorbed Energy

Consider the Specific Absorbed Energy
(Normalised by Areal Density)

Single Plate is Superior (in terms 
of specific absorbed energy)

Ø The core compressibility (and
plastic work) helps to reduce the
projectile speed to a value which is
conducive to low strain rates in the
rear sandwich panel faceplate. In
this manner, the favourable strain
rate-hardening characteristics of the
stainless steel faceplate (which are
significantly enhanced at very high
strain rates) are not exploited.



Ø Conclusions

• A lightweight sandwich panel with a metallic fibre core has been fabricated
• Can be handled in a manner similar to that of monolithic sheet

• Can be resistance welded

• Is comparatively cheap

•The core architecture can be characterised using x-ray microtomography
• Architectural data can be used to predict elastic (and yield stress) mechanical properties –
Clyne & Markaki Model

• The capacity of the sandwich panels to absorb energy when struck (at normal
incidence) by spherical projectiles has been investigated

• When normalised by areal density, the sandwich panels are no more effective at absorbing
energy than a single faceplate (at low and intermediate projectile velocities)

• At high projectile velocities, single faceplates absorb more energy (on a weight-for-weight
basis) than the sandwich panels due to plastic compression of the core which mitigates the
favourable (energy absorption) strain rate-hardening characteristics of the faceplate material



• A sandwich panel finite element model has been developed
• The faceplates were modelled as elastic-plastic solids with a strain rate-dependent, critical
plastic strain failure criterion

• The core material was modelled as an anisotropic crushable continuum with a quadratic
shear stress failure criterion (VUMAT sub-routine – Zhou and Louca)

• Predictions and experimental data are in close agreement

• The predictive FE capability must now be utilised to optimise the core material
• Exploit rate-hardening characteristics of the faceplate material

• Improve the energy-absorbing performance of the core material

Ø Conclusions

Simultaneously


