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Abstract. A new technique was developed to investigate the mechanical behaviour of carbon fibre reinforced 
polymer (CFRP) laminates containing in-plane fibre waviness. Experimental and numerical analysis of strains 
developed during four-point bending tests were performed on the defective specimens. Digital image 
correlation (DIC) was used to measure the full-field strains in the specimens when they were loaded to failure. 
The severity of the waviness defects in the specimens was characterised by ultrasound C-scans, yielding fibre 
orientation data for use in finite element (FE) models. The loading process was simulated using ABAQUS and 
the generated FE models to compute strains. The measured and predicted strain fields were decomposed into 
feature vectors using orthogonal polynomials to reduce the data dimensionality and make comparisons, where 
the similarity was represented by calculating the Euclidean distance between the two sets of vectors. The FE 
models were updated using the particle swarm optimisation (PSO) algorithm to calibrate the mechanical 
properties. The updated FE model was shown to be a good tool for predicting the magnitude and shape of 
strain around the defects.  

Introduction 

CFRP materials have been used in aerospace industry for many years due to their relatively high specific 
stiffness compared with traditional materials. However, the performance of CFRP components is affected by 
various defects, such as voids, debonds, in-plane and out-of-plane fibre waviness. Few studies have been 
conducted on in-plane fibre waviness defects, as they are not easy to characterise and even more difficult to 
induce in laboratories. In-plane fibre waviness is the deviation of fibres from the designed direction within a 
ply, and it is known that these defects are where localised stress concentrates, which leads to the final failure 
of a defective component. Fibre waviness occurs during the manufacturing process and due to four reasons. 
The first one is the different thermal expansion coefficient of the fibres and matrix, which results in distortions 
during curing. The second reason is because of the friction through the thickness and sliding of fibres caused 
by external compression during the consolidation stage. The third reason is warping effects, which result from 
the interaction between a component and tool. The fourth one is when continuous fibres are laid on a curved 
part causing them to buckle [1]. 

 
Characterisation of fibre waviness is difficult, as the fibre diameters are small and there are uncertainties and 
measurement errors that cannot be overlooked, especially for a low degree of fibre waviness. Currently the 
most common method for characterising fibre waviness in industry is non-destructive testing using ultrasound 
C-scan, which can be used to scan a region of interest and provide the surface morphology of the region. The 
surface morphology is presented as a 2D grayscale image, which can be processed to provide fibre orientation 
data for generating FE models. There is always a difference between the measured data and the FE model 
predictions of strain fields, which arises mainly because of the difficulty in identifying the correct material 
properties [2]. 
 
FE model updating is a process to tune a model to better represent reality. Fundamentally, this process is an 
optimisation problem of minimising the distance between measured data and predicted data by identifying the 
appropriate input parameters of the FE model. PSO is an evolutionary algorithm that can be applied to solve 
optimisation problems, and thus it can be used for FE model updating purposes. PSO is applied by randomly 
generating a number of particles in a multi-dimensional solution space. Each particle represents one possible 
solution to the objective function, which in this study, is the Euclidean distance between the two sets of feature 
vectors decomposed from the measured and predicted strain fields. Each particle can adjust its position in the 
solution space by learning from the other particles and its own best solution at each iteration, and convergence 
can be achieved when all the particles are close enough to the global best solution within a specified tolerance 
range [2].  
 
To better understand the effect of fibre waviness on the mechanical performance of the defective components, 
in this study, a novel approach was developed for the prediction of bending strains. The approach involves 
fibre waviness characterisation using ultrasound C-scans, image processing using Fast Fourier transformation, 
image decomposition using Chebyshev polynomials, and FE model updating using PSO.  

Experimental method 



 

Six different severities of in-plane fibre waviness were induced into CFRP specimens using the techniques 
described in [3], with 6 specimens having each level of severity giving 36 specimens in total. These specimens 
were characterised using ultrasound C-scans to capture images of the defective area. These images were 
then processed using an algorithm based on the 2D Fourier transformation to quantitatively characterise the 
fibre orientations in the region of specimens where waviness was expected. The fibre orientation data were 
used to create FE models in Abaqus, to simulate a four-point bending test. DIC was used to measure the full 
field strains when the specimens were loaded to failure by a four-point bending rig. Strain fields from the FE 
predictions and the DIC measurements were then decomposed using Chebyshev polynomials to yield feature 
vectors [4]. PSO was used to search for the best set of material properties by minimising the Euclidean distance 
between the two sets of feature vectors. 

Results and Discussion 

The convergence history of the PSO is shown in Fig. 1, which demonstrates that with increasing iterations, the 
Euclidean distance firstly decreased dramatically, then gradually converged. The reduction in the Euclidean 
distance explains that by updating the FE models, the discrepancy between measured data and predicted data 
has been lowered to a reasonable level, which can be confirmed in Fig. 2. The measured strain field (left) was 
compared with the predicted strain fields (middle and right) in Fig. 2. The middle strain field in Fig. 2 shows 
that strains were underestimated when using material properties from literature, while the updated FE model 
using calibrated properties can predict both the high strain locations and magnitude more accurately. Image 
decomposition was used to reduce data dimensionality, simplifying the comparisons between the two strain 
fields without losing important features. PSO was efficient at calibrating the mechanical properties for updating 
the FE models to give better predictions of strains during quasi-static bending. It should be noted that during 
the loading process, high strains were more likely to appear at the regions where the fibre waviness was the 
most severe, and this was observed in both the observations and predictions. 

 
 
 
 
 
 
 
 
 

Fig. 1 Convergence history of the PSO. 

        
Fig. 2 Bending strains measured by DIC (left), predicted by a FE model using literature data (middle) and 

by an updated FE model (right).   

Conclusion 

A novel technique for identifying high strain locations and predicting strain fields has been developed. This 
method can be used for evaluating specimens with in-plane fibre waviness under loading. With further 
development of the FE models, the progressive failure behaviour of a defective specimen could be simulated, 
and the ultimate strength predicted. The technique has the potential for automating the process of estimating 
the failure load of a defective CFRP component based on non-destructive test data. 
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