

Computation of full-field displacements in a scaffold implant using Digital Volume Correlation and Finite Element Analysis

Kamel Madi¹, Phd

G. Tozzi¹, J. Tong¹, A.J. Cossey², A. Au³, D. Hollis⁴ and F. Hild⁵

¹Mechanical Behaviour of Materials Laboratory, Portsmouth, UK

²Queen Alexandra Hospital, Portsmouth UK

³Smith & Nephew Endoscopy, Andover US

⁴ LaVision UK Ltd

⁵Ecole Nationale Supérieure de Cachan, France

Osteoarthritis Thickened, A joint that crunched-up has been bone with deformed Inflamed by severe no covering synovium cartilage osteoarthritis Little Osteophyte remaining cartilage Tight, thickened Bone capsule angulation ('deformity') Arthritis Research UK

Issue: cartilage has very limited capacity for self-repair !

Dr. G.Reddaiah Chunduri, Consultant Orthopaedics, Image hospitals, Hyderabad

Cartilage repair techniques

O.S. Schindler, Articular cartilage surgery in the knee, Orthopaedics and Trauma 24:2

Engineering new cartilage using a biodegradable scaffold

O.S. Schindler, Articular cartilage surgery in the knee, Orthopaedics and Trauma 24:2

Trufit plug: biphasic scaffold

- Promising implant: Trufit plug scaffold (Smith & Nephew)
 - Designed to capture and retain bone marrow elements and encourage differentiation into articular cartilage and bone

500 um

Motivation

Although used in clinical procedures, little has been done to investigate the biomechanical behaviour of the implant under physiological conditions

In situ mechanical testing coupled with DVC is a valuable tool for characterizing the mechanical behaviour and for investigating the failure mechanisms

- > Demonstrate the feasibility of the technique on the implant
- > Assessment of the reliability of the DVC displacements and strain fields
- > How DVC measurements compare with finite element predictions ?

3D representation of the morphology

<u>Voxel size</u>: 20 microns <u>Energy</u>= 51 kV / 160 μA 1500 angular projections, ~1 hour scanning time, 10 min reconstruction

In situ mechanical testing

Sample 14.7 mm length, 8.57 mm diameter, fixed on the lower compressive platen

15 min-window before CT acquisition (relaxation*)

Digital Volume Correlation - Micro-FE modelling

- > Two approaches of DVC have been mainly used: local approach and global approach.
- Systematic comparison of their performances and strain distributions is rarely reported, especially for biological tissues with foam-like morphologies [Liu et al., 2007, J. Biomech.]
- Micro-FE models have proven to be very powerful to understand and predict the mechanical behaviour of cellular materials [Muller et al., 1995, Med. Eng. Phys.; Youssef et al., 2005, Acta Mat.]
- First attempt to compare DVC measurements of cellular materials with FE predictions: [Zauel et al., 2006, J. Biomech. Eng]. Good agreement along the loading direction but less accuracy along the lateral directions.

Local approach to DVC

- ▶ Gray level (2D or) 3D images $f(\underline{x}), g(\underline{x})$
- ▶ Principle of optical flow conservation: $f(\underline{x}) \cong g(\underline{x} + \underline{u}(\underline{x}))$
- Find the best match between grey level intensity of the reference and deformed image, in small zones of interest (cross-correlation, sum of squared differences)

*[Peters et al., 1982, Opts Eng.; Bay et al., 1999, Exp Mechanics; Bornert et al., Inst. Mes. Métrol, 2004; Verlhup et al., 2004, J. Biomech.; Quinta Da Fonseca, 2005, J. Microscopy.; Benoit et al., J. Biomech., 2009]

Local approach to DVC (LA-DVC)

Seference (0% strain)

Deformed (3% strain)

- FFT algorithm (cross-correlation) implemented in DaVis* (LaVision, StrainMaster)
- Multi-pass approach
- Final sub-volumes: 32 × 32 × 32 voxels³ overlapped by 75%

*[Quinta Da Fonseca, 2005, J. Microscopy; McDonald et al., 2011, Phys. Status Solidi B]

Global approach to DVC

- > Principle of optical flow conservation: $f(\underline{x}) \cong g(\underline{x} + \underline{u}(\underline{x}))$
- > Select a specific displacement basis $\varphi_i(\underline{x})$

such that
$$\underline{u}(\underline{x}) = \sum_{i} a_{i} \underline{\varphi}_{i}(\underline{x})$$

Minimize correlation residuals*

$$\Phi^{2}\left\{a_{i}\right\} = \iiint \left[f\left(\underline{x}\right) - g\left(\underline{x} + a_{i}\varphi_{i}\left(\underline{x}\right)\right)\right]^{2}d\underline{x}$$

Linearization

*[Roux et al., 2008, Comp. Part A]

Finite element DVC (GA-DVC)

$$\Phi_{\text{lin}}^{2}(\delta \underline{u}) = \int_{\Omega} \left[f(\underline{x}) - \hat{g}(\underline{x}) - (\delta \underline{u} \cdot \nabla f)(\underline{x}) \right]^{2} d\underline{x}$$
$$= \sum_{e} \int_{\Omega_{e}} \left[f(\underline{x}) - \hat{g}(\underline{x}) - \delta a_{i}^{e} \left(\underline{\varphi}_{i} \cdot \nabla f \right)(\underline{x}) \right]^{2} d\underline{x}$$

Elementary matrix and vector (e.g., C8P1*), Correli

$$M_{ij}\delta a_j = b_i$$

$$\begin{vmatrix} M_{ij}^{e} = \int_{\Omega_{e}} \left(\nabla f \cdot \underline{\varphi}_{i} \right) (\underline{x}) \left(\nabla f \cdot \underline{\varphi}_{j} \right) (\underline{x}) d\underline{x} \\ b_{i}^{e} = \int_{\Omega_{e}} \left[f(\underline{x}) - g(\underline{x}) \right] \left(\nabla f \cdot \underline{\varphi}_{i} \right) (\underline{x}) d\underline{x}$$

Multi-scale approach to deal with secondary minima and to be consistent with Taylor approximation*

*[Roux et al., 2008, Comp. Part A]

DVC vs FE comparison

Size of the sub-volumes: 0.64 mm > size of the pore walls (struts~0.1mm)

Micro-FE model Solid phase Reference image Cube of size 5.12 mm 14.7 mm (256 × 256 × 256 voxels³) 6 Stress (MPa) 5 Inverse method 4 3 -FE 2 -Experimental (loading stage) 1 Strain (%) 0 0 2 3 1 4 8.57 mm E=600 Mpa, Yiel stress: 12.5 Mpa, Poisson coefficient: 0.3

- Solid phase: elastic perfectly plastic
- Porous phase: linear elastic (contrast: 10000)

3D meshing

*[Avizo, http://www.vsg3d.com/avizo/standard]

Boundary conditions

Correlation quality

Normalized correlation residual, r

DVC Accuracy (subset size: 32 voxels)

Displacement uncertainty:
Local approach: 0.006-0.02 voxel
Global approach: 0.002-0.004 voxel

Strain distributions (subset size: 32 voxels)

Vertical strain map

Lateral and vertical strain maps

→ (d) FE: 795 voxels/element

Discussion (1)

□ Strains maps and histograms obtained with the local approach are in good agreement with those obtained with the global approach

- Local approach:
 - FFT combined with the multi-pass approach allowed fast calculations with displacement uncertainties ranging from 0.006 to 0.02 voxel
 - Literature*: 0.005 0.056 voxel
- ➢ Global approach:
 - Displacement uncertainty can be reduced by a factor ranging from 3 to 10.
 - Might be suitable for applications where small strain levels are required ?

[* Bay et al., 1999, Exp Mechanics ; Liu et al., 2007, J. Biomech.]

Previous work*:

➤vertical strain: good agreement

>lateral strains: smaller predicted strains than measured

*[Zauel et al., 2006, J. Biomech. Eng.]

Conclusions

- In situ uniaxial compression combined with DVC performed on a scaffold implant developed for knee repair purposes
- Displacements and strains assessed using two different approaches to DVC
- Strain measurements compare well with FE predictions
- Feasibility of the DVC technique demonstrated

Perspectives

Comparison of mechanical behaviour and failure mechanisms of the implant with that of native tissues: trabecular bone, cartilage