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Summary. A technique to quantitatively assess the predictive capability of non-deterministic models against 
full-field measurements is demonstrated. The technique, based on the orthogonal decomposition of the 
measured and predicted field responses and the subsequent statistical pooling of their coefficients, allows 
the aggregation of multiple full-field response data in a universal probabilistic space. This enables, the 
incorporation of high-volume field data into an area-based comparison metric and allows for simple and 
efficient assessment of a model’s predictive capability.  
 
Introduction 
 Computational models are used for the design and optimisation of structures. It is important for 
engineers to possess confidence that these numerical surrogates can accurately represent the actual 
structure well enough that they can be exploited to draw meaningful inferences. It is also valuable to be able 
to convey that confidence in terms of a quantitative statement to decision makers and certification bodies 
alike. This is usually done through a process known as validation where the degree of the model's proximity 
to the real world is determined. 
 In order to perform a validation, comparisons between model results and experimental data must be 
made. Traditionally, this has been performed using point measurements (e.g. strain-gauges, accelerometers) 
thus leaving the engineers ignorant about the state of the largest part of the structure. Nonetheless, the 
advent of full-field measurements offers the potential of more comprehensive validation. However, this 
abundance of data is accompanied by numerous technical issues, including comparing data from sources 
with different coordinate systems, data pitch, and data types, many of which can be alleviated using 
techniques such as orthogonal decomposition [1]. This technique has been proven to be efficient by 
transforming original incomparable field results to equal sized feature vectors thus allowing for quantitative 
comparison.   
         In addition to the aforementioned, the advances in scientific computing along with the need for 
comprehensive risk assessment of critical structures has shifted the focus from deterministic models to 
Monte Carlo simulations, where multiple runs of the same model with varying inputs are performed. The 
need to evaluate these multiple predictions creates new challenges, which this paper addresses. The 
outcome is to collate the different available pieces of information from both the model and the experiments in 
a way that allows for efficient and quantitative validation.  

 
Background  
 It is normal practice for experimentalists to obtain multiple measurements (when possible) that allow 
them to draw inferences about a quantity of interest. Then, using some descriptive statistic or confidence 
intervals, the population parameters from which these values are assumed to arise from can be estimated. 
One way to present multiple observations is to use Empirical Distribution Functions (EDF). These consist of 
multiple steps that correspond to the cumulative relative frequency of the observations. Thus, they 
monotonically increase and their range lies between [0,1] (the probability space). Traditionally, EDFs are 
used to identify whether the empirical data are adequately represented by the selected family of probability 
distributions (e.g. normal, uniform, etc.) or to quantify the difference between various datasets (e.g. Model 
Predictions vs Experimental Measurements). Of course, with more experimental data, the steps become less 
abrupt and the function looks smoother. Examples of various empirical distributions are given in Fig 1.  
 

 
Fig 1. The empirical distribution functions (continuous-lines) for different sample sizes have been plotted 
against the cumulative distribution function (dashed-lines) of their normally distributed population (μ=50,σ=5).   
 
 Independently, measurements from repetitions of the experiment and predictions from Monte Carlo 
simulations can be accumulated to build analogous EDFs which are then plotted against each other. 



 

However, it is not uncommon for stress analysts to take single measurements at a number of point locations, 
for instance using strain gauges.  In this scenario, an EDF can be constructed for the measurements. An 
example is shown in Fig 2. where the dashed curve represents predictions from a Monte Carlo simulation 
and the vertical line represents a single observation from an experiment. The different plots in figure 2. could 
represent measurements taken at different locations in a structure. If it is assumed that the measurements 
follow the distribution described by the predictions; then, following the u-pooling method suggested in [2], 
one can assign a 𝑢𝑖 value to each observation that corresponds to the value of the predicted EDF at the 
intersection point (horizontal line in Fig 2.). According to the probability integral transform theorem, these 𝑢𝑖 
should be uniformly distributed. The EDF of the 𝑢𝑖-values is then plotted against the uniform Cumulative 
Distribution Function (CDF) and the difference to the uniform CDF expressed in the form of an integral 

defined as:      𝐴 = ∫ |𝑈(𝑥) − 𝐺(𝑥)|𝑑𝑥
+∞

−∞
, which corresponds to the grey-filled area on the right side of Fig 2.  

 
Fig 2. The empirical distribution functions for a single measurement (vertical continuous line) and for Monte 
Carlo predictions (dashed line) at three measurement locations (left three graphs) together with the 
corresponding three 𝑢𝑖 values plotted against the uniform CDF (right graph).  
 
Test Case 
 A case study was selected, in order to demonstrate the use of this technique to validate a 
computational model using full-field measurements. The object of interest was a composite T-joint 
representative of those found on stiffened aircraft panels. Information about the computational model and 
experimental testing can be found in [3]. Orthogonal decomposition was used to reduce the matrix of field 
data to a vector of kernel coefficients for both the measurements and predictions. The resultant coefficients 
for two repetitions of the Monte Carlo simulation and one set of measurements obtained from digital image 
correlation are shown in figure 3.  These coefficients were used as inputs to the u-pooling method as 
described above to yield the quantitative comparison shown in Fig 3. 

 
Fig 3. The first nine kernel coefficients for a region of interest from two Monte Carlo simulations and one 
digital image correlation measurement (left) and a comparison of the corresponding u-values with a uniform 
CDF (right). 
 
Conclusion  
 A new method that allows the aggregation and evaluation of multiple field datasets has been 
demonstrated. This allows engineers to provide a quantitative statement about a model's predictive capability 
while incorporating all the available pieces of information in a compressed quantitative measure. It should be 
stated that it is possible to combine multiple regions of interest and different scales in the u-pooling thus 
allowing for efficient full-field validation. 
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