International Seminar on Metal Plasticity, 19 June, 2017 Sapienza - Università di Roma, Rome, Italy

Advanced Material Testing Methods for Enhancing the Accuracy of Metal Plasticity Models

Toshihiko KUWABARA

Tokyo University of Agriculture and Technology

Material models (cold rolled ultralow carbon steel sheet)

FEA of hole expansion forming

FEA of hole expansion forming

This example suggests that ...

Accurate material models must be used to enhance the accuracy of forming simulations, <u>as the definition of the yield</u> <u>condition fully defines the behavior.</u>

Accurate material models can be determined by performing the biaxial stress tests, as the biaxial stress states are typical in real forming operation.

Contents

- 1. Typical stress states in sheet metal forming operations
- 2. Conventional biaxial stress testing methods for sheet metals
- 3. Biaxial stress testing methods using cruciform specimens and tubular specimens
- 4. In-plane tension-compression testing method

7

Typical stress states in sheet metal forming processes

Kuwabara, T.: Biaxial Stress Testing Methods for Sheet Metals. In *Comprehensive Materials Processing;* Van Tyne, C. J., Ed.; Elsevier Ltd., 2014; Vol. 1, pp 95–111.

Biaxial stress tests are necessary for accurate material modeling!

Contents

- **1.** Typical stress states in sheet metal forming operations
- 2. Conventional biaxial stress testing methods for sheet metals
- 3. Biaxial stress testing methods using cruciform specimens and tubular specimens
- 4. In-plane compression testing method

9

Conventional biaxial stress tests

Useful to measure the work hardening behavior for a larger strain range than what is achievable by uniaxial tension tests

Biaxial compression tests using adhesive bonded sheet laminate specimens

Tozawa, Y., 1978. In: Koistinen, D.P., Wang, N-.M., (Eds.), Mechanics of Sheet Metal Forming. Plenum Press, New York, pp. 81-110.

Combined tension-shear test for measuring a yield surface in the σ_x - σ_y - σ_{xy} space

Contents

- **1.** Typical stress states in sheet metal forming operations
- 2. Review of biaxial stress testing methods for sheet metals
- 3. Biaxial stress testing methods using cruciform specimens and tubular specimens
- 4. In-plane tension-compression testing method

13

Material testing methods for reproducing the typical stress states in sheet metal forming

Kuwabara, T.: Biaxial Stress Testing Methods for Sheet Metals. In *Comprehensive Materials Processing;* Van Tyne, C. J., Ed.; Elsevier Ltd., 2014; Vol. 1, pp 95–111.

Cruciform specimens in literature

ISO 16842: 2014 Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece

Biaxial tensile testing apparatus

Kuwabara et al. (1998)

Takahashi et al. (2010)

17

Material modeling based on contours of equal plastic work

The material model that accurately reproduces the work contour is an appropriate material model to be used in forming simulations.

Material modeling based on contours of equal plastic work

This was motivated as the shape of a yield locus changes with plastic deformation.

In sheet metal forming processes sheet metals go through large plastic deformation. Therefore, modeling the flow stresses as *an average behavior of a material over a deformation range* is likely to be more appropriate than determining an initial yield locus of the material.

19

¹Kuwabara et al.: Acta Mater., 50/14 (2002), 3717-3729. ²Kuwabara, Van Bael: Proc. 4th NUMISHEET, (1999), pp.85-90.

Material testing methods for reproducing the typical stress states in sheet metal forming

Kuwabara, T.: Biaxial Stress Testing Methods for Sheet Metals. In *Comprehensive Materials Processing;* Van Tyne, C. J., Ed.; Elsevier Ltd., 2014; Vol. 1, pp 95–111.

A problem of cruciform specimen

A cruciform specimen is effective for a small strain range.

Fabrication of a tubular specimen

Multiaxial tube expansion testing method

Kuwabara, T., et al., Int. J. Plasticity, 21-1 (2005), 101-117. Kuwabara, T. and Sugawara, F., Int. J. Plasticity, 45 (2013), 103-118.

Measurement system using DIC

Stress calculation

Linear stress paths

Biaxial stress-strain curves (SPCD)

Hole Expansion Simulation Considering the Differential Hardening of a 6000series Aluminum Alloy Sheet

Kuwabara, T., Mori, T., Asano, M., Hakoyama, T., Barlat, F.: Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int. J. Plasticity, 93 (2017), 164–186.

Contours of equal plastic work

Variation of *M* and α_i with ε_0^{p}

Hole expansion test apparatus

<section-header><list-item>

Thickness strain in RD

Thickness strain in 90°

Thickness strain in 45°

Material testing methods for reproducing the typical stress states in sheet metal forming

Kuwabara, T.: Biaxial Stress Testing Methods for Sheet Metals. In *Comprehensive Materials Processing;* Van Tyne, C. J., Ed.; Elsevier Ltd., 2014; Vol. 1, pp 95–111.

Contour of plastic work (Ultralow carbon steel sheet)

Yield surface in σ_x - σ_y - σ_{xy} space

Material testing methods for reproducing the typical stress states in sheet metal forming

Kuwabara, T.: Biaxial Stress Testing Methods for Sheet Metals. In *Comprehensive Materials Processing;* Van Tyne, C. J., Ed.; Elsevier Ltd., 2014; Vol. 1, pp 95–111.

Experimental methods for applying continuous stress reversals to a sheet specimen.

Yoshida et al. (2002b)

In-plane uniaxial compression testing jig for a sheet metal

Dietrich, L., Turski, K., 1978. Rozprawy Inzynierskie 26, 91-99. (in Polish)

In-plane reverse loading test devise for ultra-thin sheet metals

Kuwabara, T., et al., Int. J. Plasticity, 25 (2009), 1759-1776.

Test material

Kuwabara, T., et al., Tetsu-to-Hagané, 95-11 (2009), 732-739.

SUS304 (as-rolled) 0.3 mm thick Electronic spring parts

45

Difference in springback angle of SUS304 stainless sheets for electronic parts

Kuwabara, T., et al., Tetsu-to-Hagané, 95-11 (2009), 732-739.

Difference in springback angle between RD and TD

 $\Delta \theta = \theta' - \theta$

0

This is strange

47

What is the causes of the difference?

flow stress is the same?

Difference in flow stresses (RD vs. TD)

Conclusions

- Material models (yield functions) significantly affect the predictive accuracy in sheet metal forming simulations.
- ✓ Biaxial stress tests and in-plane reverse loading tests are effective for determining appropriate material models for sheet metals.

III July 30 (Mon) — Aug 3 (Fri), 2018

Toyocho, Tokyo