MR elastography for brain biomechanics

Philip Bayly

Erik Clayton, Aaron Feng, Ravi Namani, Traci Abney, Ruth Okamoto, Andrew Knutsen, Guy Genin

Mechanical Engineering and Materials Science Washington University in St. Louis

St.Louis Washington University in St.Louis

St.Louis Washington University in St.Louis

St.Louis Washington University in St.Louis

Basic idea of elastography

Visualize mechanical waves in tissue

Wave speed and wavelength depend on elastic modulus (stiffness)

Elastic modulus depends on tissue type/age/pathology

Motivation

- **Computer simulation** and mathematical modeling are critical to understanding and preventing TBI
 - Confidence in simulations is limited
 - Brain/skull are difficult to model
 - Predictions are difficult to verify

Experimental data is needed to define and validate computer models.

Courtesy of Martin Ostoja-Starszewski (University of Illinois)

Outline

- Impact and traumatic brain injury
 - Response of brain to skull acceleration
- MR elastography and brain stiffness
 - Visualization of shear waves in brain tissue

Overview of the Brain

MR tagging

- Subject 1: Adult male
- Resolution
 - Spatial: 1.5 mm
 - Temporal: 6 ms
 - Tag spacing: 8 mm
- 2 cm above reference plane
- Angular acceleration
 - ~250 rad/s²

MR tagging: absolute brain-skull motion

- Adult male
- Resolution
 - Spatial: 1.5 mm
 - Temporal: 6 ms
 - Tag spacing: 8 mm
- Linear acceleration
 - ~30 m/s²

MR measurement of shear waves: phase contrast

Atay et al. (2008) J Biomech Engrg.

Visualize µm-amplitude harmonic motion Requires MR compatible actuation

(Erik Clayton)

MR elastography basic principle

18 mm

Given : $\mathbf{u}_T(x, y, z, t)$ Find : shear modulus *m*

Fit *m*to shear wave equation (minimize LSE)

Simplest case :

linear elastic, homogeneous, isotropic,

$$\rho \frac{\P^2 \mathbf{u}_T(x, y, z, t)}{\P t^2} - n \tilde{\mathbf{N}}^2 \mathbf{u}_T(x, y, z, t) = \mathbf{0}$$

Gelatin – heterogeneous 400 Hz

MR elastography: Helmholtz decomposition

Isolate transverse wave component of displacement

 $\mathbf{u} = \mathbf{u}_T + \mathbf{u}_L \qquad \qquad \tilde{\mathbf{N}} \rtimes \mathbf{u}_T = 0, \\ \tilde{\mathbf{N}} \cdot \mathbf{u}_L = 0, \end{cases}$

Helmholtz decomposition performed in spatial frequency domain*

$$\mathbf{U}(\mathbf{k},t) = \mathbb{F} \quad (\mathbf{u}(\mathbf{x},t))$$
$$\mathbf{U}_{T}(\mathbf{k},t) = -\frac{\mathbf{k} \cdot (\mathbf{k} \cdot \mathbf{U}(\mathbf{k},t))}{\mathbf{k} \times \mathbf{k}}$$
$$\mathbf{u}_{T}(\mathbf{x},t) = \mathbb{F}^{-1}(\mathbf{U}_{T}(\mathbf{k},t))$$

*Romano et al. Mag Res Med. 2005)

Dilatation and distortion components

linear elastic, isotropic, homogeneous

Clayton, Genin, Bayly. Transmission, Attenuation, and Reflection of Shear Waves in the Human Brain. (RSIF 2012)

Fitting steps: more details

Fit displacement or curl as a linear function of Laplacian, in a neighborhood around each voxel

$$\mathbf{G}_{k}(\mathbf{x}) = \mathbf{\mathcal{E}}_{\mathbf{k}}^{\mathbf{a}} \cdot \mathbf{G}_{k}^{*} \overset{\mathbf{\ddot{O}}}{=} \mathbf{\tilde{O}}_{k}^{\mathbf{a}} \mathbf{\tilde{O}}_{k}(\mathbf{x})$$

 $U_{k}(\mathbf{x}) = \mathbf{\mathcal{E}} \frac{\mathbf{G}^{*}}{\mathbf{\Gamma} \mathbf{W}^{2}} \frac{\ddot{\mathbf{O}}}{\dot{\mathbf{G}}} \tilde{\mathbf{N}}^{2} U_{k}(\mathbf{x})$

 $\begin{array}{c}
100 \\
50 \\
0 \\
-50 \\
-100 \\
-0.2 \\
0 \\
0.2 \\
0 \\
0.2
\end{array}$

Wave Image

Small µ

Shear Modulus (kPa)

Virtual fields method

- Fabrice Pierron (Uni Southampton)
- Nathanael Connesson (Uni Grenoble)
- 3D volume gel cube in vibration (400 Hz)

Virtual fields method

- f=400 Hz, 0.5x0.5x0.5 mm
- 8 images shifted by period fractions of 1/8, 2/8 etc.

15

10

5

-5

-10

-15

• Displacement map: u in mm

With Fabrice Pierron (Southampton) / Nathanael Connesson (Grenoble)

X

With Fabrice Pierron (Southampton) / Nathanael Connesson (Grenoble)

Phantom studies:validation

- Gelatin
 - 70 g glycerol + 70 g water + 4 g gelatin
- Material properties and geometry:
 - Stable
 - Prescribed
 - Predictable

Magnetic Resonance Elastography @ 4.7 T

Raw MRE data

Okamoto, Clayton, Bayly. (2011) Phys. Med. Biol. 56, 6379-6400.

MRE to DST comparison: good agreement of G' and G''

Agreement within 10% at frequency overlap

Okamoto, Clayton, Bayly. (2011) Phys. Med. Biol. 56, 6379-6400.

MOUSE BRAIN

Small animal MRE is important

- Advantages
 - Can perform studies on animals that cannot be performed on humans
 - injury, aging, development, therapeutic intervention, genetics
 - Correlate mechanical properties with histology
 - Reduce technology development costs
- Challenges
 - Requires high spatial resolution

Shear waves induced in brain via *actuated* bite bar

Clayton, Garbow, Bayly. (2011) Phys. Med. Biol. 56, 2391-2406.

Mouse Brain MRE Multi-frequency Study

PS: SE-MRE (Kroenke/Bayly) **TR/TE:** 1000/27.5, **nt:** 2 **DM:** 128 x 128 x 29 x 4 (8) t_{acq} : 22 (45) minutes/frequency

4.7 T Varian Consol Acquired Res.: 250 x 250 x 250 μm

Clayton, Garbow, Bayly. (2011) Phys. Med. Biol. 56, 2391-2406.

32

Engineering

Mouse Brain MRE Multi-frequency Study

600 Hz

800 Hz

1200 Hz

1800 Hz

4.7 T Varian Consol

Acquired Res.: 250 x 250 x 250 µm Motion Encoding Cycles: 4 (600 Hz), 5 (800 Hz), 8 (1200 Hz), 10 (1800 Hz) M.E. Gradient Amp.: +/-18 G/cm Through-image-plane motion sensitized

Clayton, Garbow, Bayly. (2011) Phys. Med. Biol. 56, 2391-2406.

Frequency dependence of brain tissue in vivo

Clayton, Garbow, Bayly. (2011) Phys. Med. Biol. 56, 2391-2406.

HUMAN BRAIN

Understand human brain response to acoustic pressure load *in vivo*

No. Image Slices : 1 Temporal Resolution : 4 point Voxel : 3.0 x 3.0 x 3.0 mm³ Siemens) TR/TE: 133.3/27.5, FA: 25°, nt: 1 DM: 128 x 128 x 1 x 4 t_{acq}: 12 minutes/frequency/direction Clayton, Genin, Bayly. RSIF 2012. (In press)

Washington University in St.Louis

Х, И

Engineering

3D brain displacement data for FE model calibration

About those two wave propagation modes...

Washington University in St.Louis

Engineering

Extracranial acoustic pressure induces shear waves in the brain S014 MREB016

What happens when the frequency changes?

Increasing frequency leads to lower amplitudes and shorter wavelengths

Shear wave *motion* tells us more

Propagation vector fields show energy *flux* and *dissipation*

Structural membranes are energy conduits

Local spatial frequency estimation

Recall equation of motion (shear wave components)

-
$$T W^2 U_j(\mathbf{x}) = G^* \tilde{\mathsf{N}}^2 U_j(\mathbf{x})$$

Estimate local frequency and attenuation

Displacement
$$U_j(\mathbf{x}) = U_{0j}e^{i\mathbf{k}\cdot\mathbf{x}}$$
 Curl $\mathbf{G}_j(\mathbf{x}) = \mathbf{G}_{0j}e^{i\mathbf{k}\cdot\mathbf{x}}$
= $U_{0j}e^{i(\mathbf{\kappa}+i\alpha)\cdot\mathbf{x}}$ = $\mathbf{G}_{0j}e^{i(\mathbf{\kappa}+i\alpha)\cdot\mathbf{x}}$

Estimate complex modulus from local wavelength and attenuation

$$G^* = \frac{r w^2}{k^2 - a^2 + i2ak}$$

Manduca et al., Medical image analysis (2001)

Viscoelastic properties of brain tissue in vivo

Frequency (Hz)	G' (kPa)		G'' (kPa)	
	Grey	White	Grey	White
45	2.8	3.7	0.80	1.3
	0.51	0.76	0.23	0.44
60	3.1	3.3	1.7	2.0
	0.33	0.09	0.30	0.08
80	4.4	4.7	2.3	2.4
	0.25	0.55	0.22	0.48

$$\begin{bmatrix} k^2 - \alpha^2 & 2\alpha k \\ -2\alpha k & k^2 - \alpha^2 \end{bmatrix} \begin{bmatrix} G' \\ G'' \end{bmatrix} = \begin{bmatrix} \rho \omega^2 \\ 0 \end{bmatrix}$$

Clayton, Genin, Bayly. RSIF 2012.

MR elastography in brain

Displacement Animations

Washington University in St. Louis Re-sliced Displacement A. Engineering

 For visualizing wave propagation in the foothead direction, MRE displacement data is resliced and animated perpendicular to image acquisition planeging planes

RL displacement propagates primarily in AP dir

AP displacement propagates primarily in RL dir

z-component of curl and e_{xy} computed for third slice

Shear strain amplitudes and dilatation

Mechanical Anisotropy ?

Diffusion tensor imaging

Diffusion tensor imaging detects anisotropic diffusion of water (anisotropic structure)

- DTI data is processed using method of Shimony et al (Radiology 212:770-784,1999) to compute MD, FA, and eigenvectors
- DTI slice planes are the same as the MRE slice planes
- Arrow plots used to code regions with fractional anisotropy above a threshold of 0.25.
- Arrow direction/color indicate direction of eigenvector of maximum diffusion and length indicates magnitude of FA

S018-MREB024 Mean Diffusivity

S018-MREB024 Fractional Anisotropy

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

S018-MREB024, DTI vectors, slice 3

Engineering

Color coded arrow plot overlaid on FA image

MD (slice 3)

FA (slice 3)

Washington University in St.Louis

Engineering

DTI + MRE process

MR elastography

• MRE provides estimates of brain stiffness in vivo

- Characterizes linear behavior (small deformations)

- Provides estimates of complex shear modulus
- MRE provides measurements of displacement and strain due to acoustic excitation
 - Complements tagging studies
 - Illuminates effects of anatomy on motion

Acknowledgements

• Group members

 R Namani, AK Knutsen, AA Sabet, SM Atay, CL Mac Donald, TS Cohen, CC Kessens, EE Black, Erik Clayton, Aaron Feng,

Collaborators

- LA Taber, JJ Neil, J Ackerman, CD Kroenke, Fabrice Pierron
- GM Genin, DL Brody, RJ Okamoto
- Funding
 - NIH: Grants R21 NS045237 , R01 NS055951, R21 EB005834
 - NSF: Grant DMS-0540701
 - McDonnell Center for Higher Brain Function
 - McDonnell Center for Cellular and Molecular Neurobiology

Washington University in St. Louis Washington University in St. Louis School of Engineering & Applied Science School of Medicine School of Medicin

