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Power Ultrasonics

Low power ultrasonics: usually > 1MHz
eg. imaging ultrasound, NDE, therapeutic ultrasound

Power ultrasonics: usually 20 – 100 kHz
eg. cleaning, metal forming, food processing, welding, 
machining, cutting, surgery
Power ultrasonic devices are usually tuned to resonate at 
the operating ultrasonic frequency, often in a longitudinal 
mode of vibration, and are therefore constructed from one 
or multiple half-wavelength components.



Ultrasonic cutting blades

35kHz and 20kHz tuned ultrasonic cutting 
blades manufactured in titanium

Ultrasonic Generator

Cutting BladePiezoelectric 
Transducer

λ/2

50kHz tuned ultrasonic cutting blade and handpiece



Temperature measurements during cutting

Six thermocouples are positioned in the specimen at 
three different points along the cutting axis. The 
closest probes (1, 2 and 3) are 1 mm, and the others 
(4, 5 and 6) are 2 mm from the cutting axis. 

Direction of cut

Cutting at 0.4mm/s Cutting at 5.8mm/s



Effect of blade profile
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Effect of blade orientation



Debond finite element model of cutting



2D and 3D Ultrasonic Cutting Simulations

Uses Abaqus explicit solver
Utilises symmetry about cutting plane
Uses shear failure criterion in plastic 
region of stress-strain curve
Uses adaptive meshing if required

Blade temperature in 3D fully 
coupled thermal stress FE model 
of ultrasonic cutting



FE model of ultrasonic cutting of bone
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2D fully coupled thermo mechanical 
modelling approach.
Cutting simulated in guillotine 
configuration.
Temperature dependent material data.
Uses element erosion.
Removes elements when shear failure 
criterion reached.



Normalised Stress and Displacement

High Gain Blade

• In a cylindrical horn the longitudinal node
corresponds to the highest stressed section.

• The highest stress occurs at the end of the blade 
tapering because of the steep section reduction.
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Reducing Stress - Moving the Nodal Position
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• The blade highest stress location is the
same for each horn modification, 
however the stress peak reduces as 
the node moves back.



LDV modal analysis of cutting blades



Ultrasonic Bone Cutting System

Mectron ultrasonic osteotome

Hand-piece with cutting insert

Ultrasonic cutting inserts (Mectron tips)



Ultrasonic Inserts

Insert for implantology

transducer
insert

Insert for bone cutting



Experimental and FE Modal Analysis

FE predictions for the 
nominal mode

f = 25615 Hz

EMA using 3D LDV:
nominal mode

f = 25890 Hz



Experimental and FE modal analysis

FE predicted and EMA measured blade 
modes of vibration

FRF from transducer-blade assembly 
measured using 3D laser vibrometer

Blade 1st

Longitudinal 
mode



Principal parametric resonance
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• Secondary response measured at two excitation levels

• Primary response measured at three excitation levels

Principal parametric resonance: Ω ≈ 2ω



Double principal parametric resonance

Two v-regions in two distinct frequency bands 
of the primary response indicate that the 
excitation level threshold for two modal 
couplings is reached.

The first combination resonance has a higher 
excitation level threshold and is weakly coupled.

The second combination has a lower excitation   
level threshold and is strongly coupled.
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Parametrically excited combination resonances

lω1ω 2ω

Combination I: 21 ωωω +≈l

432 ωωω +≈l

l2ω4ω
3ω

Combination II:

• System driven at 35.29 kHz

• System driven at 43.1 kHz



Stability regions

Combination I
Combination II

For the single blade system, mode combination II
has a lower threshold and wider unstable region



Nonlinear response by in-plane ESPI 

Grid Number
Bar Length

Grid Number
Bar Circumference

ESPI measured horizontal-in-plane response of an ultrasonic horn

ESPI measured in-plane nonlinear response of an ultrasonic cutting blade



Removal of thermal effects

Mectron Transducer connected to cutting insert

(a) Continuous excitation (b) One-second long excitation with cooling
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Ultrasonic Implant Surgery
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