Ultrasonic Cutting of Bone

BSSM Seminar: 23rd June 2009
Experimental Mechanics in Biological Tissues Prof Margaret Lucas
Dept. Mechanical Engineering

Low power ultrasonics: usually $>1 \mathrm{MHz}$ eg. imaging ultrasound, NDE, therapeutic ultrasound

Power ultrasonics:
usually $20-100 \mathrm{kHz}$
eg. cleaning, metal forming, food processing, welding, machining, cutting, surgery
Power ultrasonic devices are usually tuned to resonate at the operating ultrasonic frequency, often in a longitudinal mode of vibration, and are therefore constructed from one or multiple half-wavelength components.

Ultrasonic Generator

35 kHz and 20 kHz tuned ultrasonic cutting blades manufactured in titanium

50 kHz tuned ultrasonic cutting blade and handpiece

Temperature measurements during cutting

Six thermocouples are positioned in the specimen at three different points along the cutting axis. The closest probes (1,2 and 3) are 1 mm , and the others (4,5 and 6) are 2 mm from the cutting axis.

35 kHz tuned blade

35 kHz tuned blade with indented cutting profile

Debond finite element model of cutting

+3.098e+04
+2.026e+04
+9. $548 \mathrm{e}+03$
-1.188e+ 04
-2.259e+04
-3.331e+04
$02 \mathrm{e}+04$
$74 \mathrm{e}+$
45e+
17e+04
88e+04
59 e 04

2D and 3D Ultrasonic Cutting Simulations

Uses Abaqus explicit solver
Utilises symmetry about cutting plane
Uses shear failure criterion in plastic region of stress-strain curve
Uses adaptive meshing if required

Blade temperature in 3D fully coupled thermal stress FE model of ultrasonic cutting

FE model of ultrasonic cutting of bone

2D fully coupled thermo mechanical modelling approach.
Cutting simulated in guillotine configuration.

Temperature dependent material data.
Uses element erosion.
Removes elements when shear failure criterion reached.

Normalised Stress and Displacement

- In a cylindrical horn the longitudinal node corresponds to the highest stressed section.

High Gain Blade

- The highest stress occurs at the end of the blade tapering because of the steep section reduction.

LDV modal analysis of cutting blades

Hand-piece with cutting insert

Ultrasonic cutting inserts (Mectron tips)

Ultrasonic Inserts

Insert for implantology

FE predictions for the nominal mode
$f=25615 \mathrm{~Hz}$

$\mathrm{f}=25890 \mathrm{~Hz}$
EMA using 3D LDV: nominal mode
$\mathrm{f}=25890 \mathrm{~Hz}$

Experimental and FE modal analysis

FRF from transducer-blade assembly measured using 3D laser vibrometer

FE predicted and EMA measured blade modes of vibration

Principal parametric resonance

- Primary response measured at three excitation levels

- Secondary response measured at two excitation levels

Principal parametric resonance: $\Omega \approx \mathbf{2 \omega}$

Double principal parametric resonance

Two v-regions in two distinct frequency bands of the primary response indicate that the excitation level threshold for two modal couplings is reached.

The first combination resonance has a higher excitation level threshold and is weakly coupled.

The second combination has a lower excitation level threshold and is strongly coupled.

- System driven at 35.29 kHz

Combination I: $\omega_{l} \approx \omega_{1}+\omega_{2}$

- System driven at 43.1 kHz

Combination II: $\quad \omega_{2 l} \approx \omega_{3}+\omega_{4}$

Stability regions

For the single blade system, mode combination II has a lower threshold and wider unstable region

Nonlinear response by in-plane ESPI

ESPI measured horizontal-in-plane response of an ultrasonic horn

ESPI measured in-plane nonlinear response of an ultrasonic cutting blade

\triangle Sweep Up 5V

- Sweep Down 5V
- Sweep Up 100V

Mectron Transducer connected to cutting insert

- Sweep Down 100V
(a) Continuous excitation
(b) One-second long excitation with cooling

End

THANK-YOU

The work presented has been carried out by a number of PhD Students and PostDoctoral Research Assistants:

Dr Andrea Cardoni
Dr Alan MacBeath
Dr Patrick Harkness
Dr Euan McCulloch
Mr Andrew Mathieson

