Standard representation of information

From multiple data streams

Dr. Norman Swindells CEng, FIMMM Ferroday Limited

Systems of systems

Supply chain Manufacturing sequence

Central storage and control PDM/PLM system

NPL FESI BSSM workshop (c) Ferroday Ltd 2010

Integration of engineering systems

Communication of information

- To communicate information we always need:
 - the data items that encode the information
 - an information model to define the meaning and the structure of the data (semantics and the syntax)
 - a dictionary to define the meanings of the data items
- Everyone in a communication process must use the same model and the same dictionary to avoid ambiguity
 - E.g. a sentence in a natural language or the representation of a calendar date are examples of standardised information models

Product data technology

- An engineering solution to representation and communication
 - Developed in a global project by ISO TC184/SC4
- Specify representation of technical information by standardised information models
- The information models:
 - Written in the EXPRESS modelling language
 - Have explicit rules for interpretation of the data items
- Computer-understandable within an engineering domain
 - Standardised interfaces and convertible to XML
- Independent from any computer software system
 - Life time of products is longer than the life time of software

Product data technology in manufacturing

180 10303 Product data representation and exchange

ISO 10303 and properties

- A property value for a product has to be associated with a data environment (metadata) that defines its validity
- ISO 10303-45 Material and other engineering properties (1998 and 2008)
- Meaning (semantic) of an engineering property is defined by a measurement process
- ISO 10303-235 Engineering properties for product design and verification (2009): schema for the measurement of any property of any product by any process
 - Names of processes and their properties can be defined in a reference data conforming to ISO 13584 Parts library or by using OWL/RDF ontologies

Scope of ISO 10303-235

- Products
- Properties
- Processes
- Numerical values
- Maths values
- Substance composition and structure
- State
- Tolerances
- Uncertainty, reliability

- Persons, organisations
- Approvals, qualifications, certification
- Documents, files
- External references
- Effectivity
- Language, Locations
- Requirements
- Resources

How to apply ISO 10303-235

- Model the application scenario e.g the NPL bridge
- Map the scenario items onto the ISO 10303-235 schema
- Check the validity of the mapping :
 - Populate the structure with examples of instances of data from the scenario
 - Generate data files confirming to ISO 10303-21 (ASCII text) or ISO 10303-28 (XML)
- Develop a software implementation to achieve the same result so that the application is invisible to the user
- Aggregate the output of different data streams in the same information structure – sustainable engineering information

Bridge monitoring system

Conclusions

- Product data technology has been a global success
- Applications are in: aerospace, manufacturing, ship design and construction, defence, chemical process plant, offshore oil & gas, composite material products, electronics, cutting tools, systems engineering, etc, etc.
- ISO 10303-235 can represent any property for any product measured by any method.
- Projects to apply this technology to structural integrity will be welcomed.