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Abstract. In structural health monitoring frameworks, accurately estimating a structure’s loading history with 
quantifiable uncertainty is crucial for fatigue life assessment. A linear Gaussian Process Latent Force Model 
(GPLFM) is used to recover a simulated point load on a 0.8m composite sandwich blade using distributed 
strain measurements, with a view towards experimental validation. The development of a reduced-order strain 
modal GPLFM with joint input-state estimation utilising the Kalman filter are outlined and factors impacting its 
performance in the recovery of an experimental shaker load discussed. 

Introduction 

Accurate estimation of dynamic loading is crucial for predicting a structure’s remaining useful life. Strain 
measurements from fibre Bragg gratings (FBGs) are being increasingly considered in offshore monitoring due 
to their ability to be embedded in composite structures, resistance to electromagnetic interference, and 
immunity to lightning issues [1]. This work employs strain measurements within a Bayesian framework to 
estimate point loads applied to a composite blade structure using a Gaussian Process Latent Force Model 
(GPLFM) [2], utilising a linear modal superposition (MSUP) model updated via experimental modal analysis. 

Gaussian Process Latent Force Models 

Linear dynamic structural systems can be represented as a state space model, characterised by a transition 
model that describes how states (i.e., displacement, velocity) evolve over time, and a measurement function 
that relates these states to observed variables. From a Bayesian probabilistic perspective, these deterministic 
functions simply become densities. If the transition is a first order Markov process, and the noise model is 
assumed to be a Wiener process in continuous time, the following state space model can be obtained: 

 
𝒛̇(𝑡) = 𝐹𝑠𝒛(𝑡) + 𝐺𝑠𝒖(𝑡) + 𝒒(𝑡)            𝒒(𝑡)~𝒩(0, 𝑄)                            (1)                                                                                                              

𝒚𝑡 = 𝐻𝒛(𝑡) + 𝐷𝒖(𝑡) + 𝒗(𝑡)                 𝒗(𝑡)~𝒩(0, 𝑅)                          (2) 

 
Where Fs is the transition matrix, Gs the input matrix, H is the observation matrix and D is the feed-through 
matrix, which may be zero depending on the parameter being observed. Following discretisation, Equations 1 
and 2 can be solved for exactly in a Bayesian framework using the Kalman filter [3] and Rauch-Tung-Striebel 
(RTS) smoother algorithms [4]. 

As continuous dynamic structural systems theoretically have an infinite number of degrees of freedom, it is 
often more suitable to transform from a physical perspective to the modal domain, where behaviour is 
characterised by fundamental modes of vibration. For a probabilistic state space system with strain 
measurements as the observation, this gives rise to the following model: 
 

𝒛̇ =  [
𝟎 𝕀

−Ω2 −2𝑍Ω
] 𝒛 + [

𝟎
Φ̃

] 𝒖                   (3) 

𝜺 = [Φ̃𝑠 0]𝒛                                                                                                                                    (4) 

 

Where 𝒛 =  [𝑧1 …  𝑧𝑛𝑚
 , 𝑧1̇ … 𝑧̇𝑛𝑚]𝑻 is the modal state vector, and 𝑛𝑚  is the number of modes considered. Note 

that the first half of the state vector (modal displacements) is related to the measured strain values by the 

mass-normalised strain mode shape matrix, Φ̃𝑠. 

In the case where the input load to the system is also unknown, the state vector can be augmented such that 
both the states and input are filtered simultaneously. In the latent force formulation, the input forces are treated 

as Gaussian processes, defined by a mean and a covariance function such that 𝑢𝑡  ~ 𝐺𝑃(0, 𝑘(𝑡, 𝑡′)). Hartikainen 

and Särkkä [5] demonstrated that this Gaussian process can be given equivalently in state space form as a 
stochastic differential equation driven by white noise. The resulting augmented state vector and state transition 
model is given by: 
 

𝒒 =  [𝑧1, … , 𝑧𝑛𝑚
 , 𝑧1̇, … , 𝑧̇𝑛𝑚 ,  𝑢1, … , 𝑢𝑛𝑚

 , 𝑢1̇, … , 𝑢̇𝑛𝑚   ]𝑻               (5) 

𝒒̇ =    [
𝐹𝑠 𝐺𝑠

𝟎 𝐹𝑘
] 𝒒 + 𝐿𝒘                (6) 



 

Where Fs is the system transition matrix, Gs determines how inputs enter the system, and Fk is the transition 
matrix for the input stochastic differential equation, which is dependent on the chosen covariance function. L 
is a selection matrix for input derivatives and 𝒘 is a white noise matrix with spectral density 𝑆(𝑤), also 
dependent on the chosen covariance function. In this work, the Matérn covariance function with a smoothness 

parameter v = 3/2 was used, giving rise to two hyperparameters 𝜃 = [𝑙, 𝜎2] that can be used to encode forcing 
properties. Optimisation for these parameters is done through minimising the energy function 𝜙(𝜃) of the 
Kalman filter, which is proportional to the negative marginal log likelihood of the observed data conditioned on 
the parameters being optimised: 

 
𝜙(𝜃) ∝ −𝑝(𝑦1:𝑇| 𝜃 )                 (7) 

 
Model Derivation 

The above model was tested in the recovery of a random shaker excitation, on a 0.8m CRFP blade structure, 
utilising an accelerometer in the flapwise bending direction and four strain gauge measurements connected 
via a quarter bridge configuration aligned along the blade span axis. The applied load was validated using a 
compressive loadcell measurement. 

 

 

Fig. 1: (left) Composite blade impact modal analysis, (right) finite element model of blade structure with strain 
mode shape evaluation points 

A finite element model was updated using impact modal analysis results using a Bayesian least squares 
parameter estimator. The resulting model was used to acquire modal parameters for the reduced order 
formulation described above. More information on model updating methods can be found in [6]. 

Discussion 

With a satisfactory reduced-order model, we can assess whether incorporating this linear superposition of 
modes into the GPLFM framework accurately recovers a known shaker load. It will be seen that the introduction 
of measurements based on sparse strain sensors decreases the signal to noise ratio, which must be 
considered when learning the GPLFM. The process is further complicated when one considers whether the 
representation of the dynamics in the anisotropic composite structure can be adequately captured in the linear 
superposition setting.  

A final point of care which must be taken is in tuning of the small number of hyperparameters associated with 
the method. The GPLFM requires learning of an overall scaling of the force magnitude and of the characteristic 
length scale of the signal, this tuning is also impacted by the presence of noise. Further work should be carried 
out to extend the approach shown here to cases where multiple and distributed loads are impacting the 
structure of interest as this will require extension of the underlying GP models.   
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