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Abstract. The study proposes a methodology to predict long-term creep behaviour based on short-term creep
data of Alloy 617. The methodology employs a multi-objective genetic algorithm (MOGA) to optimise the
material parameters of the Kachanov-Rabotnov (K-R) model. It is shown that the methodology is highly
successful in predicting creep behaviour at 800°C. However, at 900°C and 1000°C, oxidation leads to the
atypical accumulation of creep plasticity, which the K-R model cannot account for.

Introduction

Alloy 617 is a nickel-based superalloy with a wide range of high-temperature applications, such as for pipelines
in aeroengines [1] and intermediate heat exchangers in nuclear reactors [2]. These systems operate at
elevated temperatures and pressures, in which individual components are expected to undergo significant
creep damage during their lifetime. The accumulation of creep damage can lead to the unexpected failure of
components if left unmanaged, and in turn significantly shorten the life and economic viability of the system.
Thus, the ability to predict creep damage is of technological importance for engineers designing such systems.

The Kachanov-Rabotnov (K-R) model [3, 4] was designed to predict high-temperature creep. It stands out from
single-point (e.g., Norton’s power law [5] and Larson-Miller method [6]) and other multi-point (e.g., Ductility
Exhaustion [7] and Stress-Modified Ductility Exhaustion [8]) models, in that it inherently accounts for the multi-
regime nature of high-temperature creep, to thus provide improved predictions. The challenge with multi-point
models (e.g., the K-R model) is with determining the material parameters. Numerical methodologies, such as
linear regression [2], simulated annealing [9], and artificial neural networks (ANN) [10], have been employed
with mixed results. For instance, linear regression overly relies on initial parameter values, simulated annealing
can be inconsistent and time-consuming, and ANNSs are difficult to implement and require large amounts of
data to train. Thus, there is interest in employing the multi-objective genetic algorithm (MOGA) for parameter
optimisations. The following study proposes the methodology of using the MOGA to calibrate the K-R model
by computing its multiple interdependent material parameters. The methodology is demonstrated by calibrating
the model using short-term creep data of Alloy 617 produced by the Idaho National Laboratory (INL) [11] and
using the calibrated model to predict the alloy’s long-term creep behaviour.

Experimental Data

The current study uses the full, uniaxial, creep curves of Alloy 617 from INL, conducted at 800°C (60, 65, 70,
80 MPa), 900°C (26, 28, 31, 36 MPa), and 1000°C (11, 12, 13, 16 MPa). The predominance of the creep curves
in the secondary and tertiary creep regimes justifies using the K-R model to predict the behaviour of the alloy,
since the model only accounts for secondary and tertiary creep. Nevertheless, to improve accuracy, we
accounted for the primary creep by removing it from the experimental creep curves and implementing a strain
offset, &,, for the predicted curves. For each creep curve, we drew tangents at the minimum creep rate. The
values of &, for the curves corresponded to the intercepts between the tangents and the vertical axis.

Methodology

The derivation of the K-R model used in this study follows Stewart et al. [12], which involves incorporating
Norton’s power law [5] into the temperature-dependent K-R constitutive equations. The resulting expression
(Eq. 1) defines the K-R model with its material parameters (4, n, M, ¢, and y).
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In the study, we defined the four objective functions, E; ,, of the MOGA to minimise the mean square errors
between the observed and predicted strain (), time-to-failure (t), strain-to-failure (g¢), and minimum creep

rate (¢,,). In other words, when E; , — 0, then fttlfédt — fttlfédt -0, —F—>0,&—& -0 andé, — &, - 0.

Results and Discussion

To demonstrate the methodology, we conducted three sets of ten optimisations using the data at 800°C, 900°C,
and 1000°C, to calibrate the K-R model by determining its material parameters (4, n, M, ¢, and y). The
optimisations calibrated the model with short-term data, and the calibrated model was used to predict the long-
term creep behaviour of the alloy. The results of the optimisations are displayed in Fig. 1.
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Fig. 1. Results of the optimisation at 800°C (a), 900°C (b), and 1000°C (c), calibrating with short-term creep data (red and purple) to predict
long-term creep behaviour (green and blue). Observed and predicted creep curves are displayed as solid and dotted lines, respectively.

Fig. 1a demonstrates that the proposed methodology can predict the long-term creep behaviour at 800°C,
accurately and consistently, when the K-R model is calibrated with short-term creep data. In particular, the
time-to-failure predictions are of exceptional accuracy. While the strain-to-failure predictions are less accurate,
they are always conservative, which is acceptable from an engineering perspective. These results are of
technological importance, as in practice, it is easier and less costly to obtain the short-term experimental data
(at higher stress conditions) than the long-term experimental data (at lower stress conditions).

However, the predictions at 900°C (Fig. 1b) and 1000°C (Fig. 1c) are relatively less accurate and consistent,
especially for creep curves conducted with lower stresses. This can be attributed to the changes in the ongoing
creep mechanism, thought to be triggered by oxidation at higher temperatures as a result of testing Alloy 617
in air [13]. The cumulative effect of oxidation over the longer creep lives result in unconventional creep
behaviour, which manifests itself by atypically shaped creep curves. The K-R model’s inability to account for
the atypical creep curves thus resulted in the decreased accuracy in the creep predictions at 900°C and
1000°C. Furthermore, since the oxidation is a diffusion-controlled process, the oxidation effect is more
pronounced for longer tests, which explains the worse accuracy at lower stresses. That said, it is worth noting
that the methodology can still provide indicative time- and strain-to-failure predictions at 900°C and 1000°C.

Conclusion

In this study, we proposed a methodology that employed a MOGA to determine the material parameters of the
K-R model and tested the methodology using INL-produced creep data of Alloy 617. We demonstrated that
the methodology could consistently provide accurate and conservative predictions for the time- and strain-to-
failure at 800°C. However, the predictions at 900°C and 1000°C were less accurate, which we attributed to the
alloy’s exposure to air. At higher temperatures, the oxidation resulted in atypically shaped creep curves that
the K-R model could not account for. Nevertheless, within the limits of the K-R model, the proposed
methodology was able to predict the long-term creep behaviour of Alloy 617 using only the short-term creep
data. This is of great significance, as it will allow engineers to safely design components in crucial creep-
prominent systems, such as in aeroengines and nuclear reactors.
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