Practical assessment of the accuracy of volumetric digital image correlation measurements for the analysis of geomaterials

> Nicolas Lenoir, <u>Michel Bornert</u>, Jean-François Bruchon, Ababacar Gaye

Laboratoire Navier - École des Ponts ParisTech -Université Paris-Est - Marne-la-Vallée



Navier



1) Introduction : microCT in-situ tests on geomaterials

- 2) Short review of DIC and DIC error sources
- 3) Quantification of discrete-DIC errors
- 4) Quantification of systematic errors



# In situ tests in microCT

## (cf E. Maire)



# Laboratory microCT setup at Navier

# École des Ponts 2 SOURCES

ParisTech

Navier

#### Air bearings axes

## 100kg rotation stage

Manufacturer: RX Solutions, 2010-2012 7 in situ testing devices

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier



x - Structures - Procéde

#### **\* île**de**France**



# Example: hyromechanical couplings in granular materials

PhD J.F. Bruchon (with M. Vandamme, J.M. Pereira P. Delage)



# **Preliminary test:**

## Radiographs movie + 2D-DIC



M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

Cross-sections through 3D

volumes before/after

# Standard volumetric-DIC: preliminary oedometric test on dry sand



# Discrete volumetric-DIC: ongoing...

Older test

Hall et al, Géotechnique, 2010



#### **Overall displacement field**







#### **Discrete DIC, example of results:** rotation angles



Questions:

Accuracy of these fields?

Accuracy dependences?

Control of image acquisition and processing procedures to improve accuracy?

...some indications on these complex questions



M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier



#### 3 Theoretical modelling and experimental validation of angular error in discrete DIC

...related to image noise



( Bornert et al. ICEM14, Poitiers, 2010)

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

## Theoretical analysis: Perturbation of DIC minimum due to image noise ?

Correlation coefficient (SSD):

$$C(\underline{T},\underline{\underline{R}}) = \int_{D} \left[ f(\underline{x}) - g(\underline{X}_{i} + \underline{\underline{T}} + \underline{\underline{R}}.(\underline{x} - \underline{X}_{i})) \right]^{2} dx$$

**Optimality condition:** 

Translation of center

 $dC = 0 = \int_{D} \left[ f(\underline{x}) - g(\phi(\underline{x})) \right] \underline{\nabla g}(\phi(x)) \cdot \left[ \underline{dT} + \underline{dR} \cdot (\underline{x} - \underline{X}_{i}) \right] dx \qquad \forall \underline{dT}, \forall \underline{dR}$ 

Rotation

Perturbation of optimum due to noise:

noise

(assuming  $f(\underline{x}) \approx g(\phi(\underline{x}))$ ) (such that  $\nabla f(\underline{x}) \approx \nabla g(\phi(\underline{x})) \cdot \underline{R}$ )

(Derived from Hild & Roux 2006)

$$\begin{split} &\int_{D} \Big[ \partial f(\underline{x}) - \partial g(\phi(\underline{x})) \Big] \underline{\nabla} g(\phi(x)) \cdot \Big[ \underline{dT} + \underline{dR} \cdot (\underline{x} - \underline{X}_{i}) \Big] dx \qquad \forall \underline{dT}, \forall \underline{dR} \\ &= \int_{D} \underline{\nabla} g(\phi(x)) \cdot \Big[ \underline{\partial T} + \underline{\partial R} \cdot (\underline{x} - \underline{X}_{i}) \Big] \underline{\nabla} g(\phi(x)) \cdot \Big[ \underline{dT} + \underline{dR} \cdot (\underline{x} - \underline{X}_{i}) \Big] dx \end{split}$$

Induced perturbation

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

$$\begin{bmatrix} \underline{R}^{T} & \underline{dT} \\ \underline{R}^{T} & \underline{dR} \end{bmatrix} \begin{bmatrix} \int_{D} [\partial f(\underline{x}) - \partial g(\phi(\underline{x}))] \nabla f(x) dx \\ \int_{D} [\partial f(\underline{x}) - \partial g(\phi(\underline{x}))] \nabla f(x) \otimes (\underline{x} - \underline{X}_{i}) dx \end{bmatrix} = \forall \underline{dT}, \forall \underline{dR}$$

$$\begin{bmatrix} \underline{R}^{T} & \underline{dR} \\ \underline{R}^{T} & \underline{dR} \end{bmatrix} \begin{bmatrix} \int_{D} \nabla f(x) \otimes \nabla f(x) dx & \int_{D} \nabla f(x) \otimes (\underline{x} - \underline{X}_{i}) \otimes (\underline{x} - \underline{X}_{i}) dx \\ \int_{D} \nabla f(x) \otimes (\underline{x} - \underline{X}_{i}) \otimes \nabla f(x) dx & \int_{D} \nabla f(x) \otimes (\underline{x} - \underline{X}_{i}) \otimes \nabla f(x) \otimes (\underline{x} - \underline{X}_{i}) dx \end{bmatrix} \begin{bmatrix} \underline{R}^{T} & \underline{dT} \\ \underline{R}^{T} & \underline{dR} \end{bmatrix}$$
is a skew-symmetric tensor such that  $(\underline{R}^{T} & \underline{dR}) \cdot \underline{X} = \underline{dw} \wedge \underline{X} \\ \underline{dw} = \text{infinitesimal rotation vector (in reference configuration)}$ 

$$\begin{bmatrix} \int_{D} \nabla f(x) \otimes \nabla f(x) dx & \int_{D} \nabla f(x) dx \\ \int_{D} [\partial f(\underline{x}) - \partial g(\phi(\underline{x}))] \nabla f(x) dx \\ \int_{D} [\partial f(\underline{x}) - \partial g(\phi(\underline{x}))] \nabla f(x) dx & \int_{D} \nabla f(x) \otimes [\nabla f(x) \wedge (\underline{x} - \underline{X}_{i})] dx \end{bmatrix} =$$

$$\begin{bmatrix} \int_{D} \nabla f(x) \otimes \nabla f(x) dx & \int_{D} \nabla f(x) dx \\ \int_{D} [\nabla f(x) - \partial g(\phi(\underline{x}))] \nabla f(x) dx & \int_{D} [\nabla f(x) \wedge (\underline{x} - \underline{X}_{i})] \otimes [\nabla f(x) \wedge (\underline{x} - \underline{X}_{i})] dx \end{bmatrix} =$$

$$\begin{bmatrix} \delta x 6 \text{ matrix } \underline{M} \\ \underline{M} = \underline{R}^{T} & \underline{dT} \\ \underline{M} = \underline{R}^{T} & \underline{dT} \end{bmatrix}$$

$$\begin{bmatrix} d x - \underline{R}^{T} & dT \\ d x - \underline{X} \end{bmatrix} = \frac{17/38}$$

Computation of covariance tensor of errors

(assuming white noise on pixels)

$$\left\langle \begin{bmatrix} \underline{\partial t} \\ \underline{\partial w} \end{bmatrix} \otimes \begin{bmatrix} \underline{\partial t} \\ \underline{\partial w} \end{bmatrix} \right\rangle :_{2}^{3} \begin{bmatrix} \underline{M} \otimes \underline{M} \end{bmatrix} = 2p^{3}\sigma_{f}^{2}\underline{M}$$

Correlation length of noise (~voxel size) Standard deviation of image noise

General procedure: diagonalize  $\underline{\underline{M}}$  ...

(See Bornert et al. ICEM14, Poitiers, 2010)

If 
$$\underline{\underline{M}}$$
 diagonal:  $\left\langle \begin{bmatrix} \underline{\partial t} \\ \underline{\partial w} \end{bmatrix} \otimes \begin{bmatrix} \underline{\partial t} \\ \underline{\partial w} \end{bmatrix} \right\rangle = 2p^{3}\sigma_{f}^{2} \underline{\underline{\text{Diag}}} \left( \frac{1}{\mu_{1}}, \dots, \frac{1}{\mu_{6}} \right)$ 

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

18/38

eigenvalues







**Theoretical error:**  $\sigma_f \approx 300$  $\sigma_{f}$  $\Delta f \approx 7000$ 

 $\approx 0.02$  degrees

23

 $b \approx 6$ 

 $a \approx 30$ 

Profile in 16bis CT section

Spheres :  $\sigma_t \approx 0.003 \text{ vox}$  $\sigma_w \approx +\infty$ Cubes :  $\sigma_t \approx 0.002 \text{ vox}$  $\sigma_w \approx 1/3000 \text{ rad}$ 

#### Macroscopic DIC:

$$\boldsymbol{F} - \boldsymbol{i} = \begin{bmatrix} -9.31.10^{-4} & -1.41784.10^{-3} & 3.0182.10^{-2} \\ 6.04.10^{-4} & -7.50814.10^{-4} & 3.1939.10^{-2} \\ -3.0518.10^{-2} & -3.2247.10^{-2} & -1.447.10^{-3} \end{bmatrix}$$

 $\alpha \approx 2.53(\pm 0.01) \deg$ 

(error ~0.0005)

 $\underline{n} \approx 0.726 \underline{e}_x + 0.687 \underline{e}_y - 0.02288 \underline{e}_z$ 

 $\rightarrow \alpha_x = 1.840, \alpha_y = 1.740, \alpha_z = -0.058 \text{ (deg)}$ 

Individual discrete-DIC grain analysis

(on ~700 grains, >95% success)

|             |     | $t_x$    | $t_y$ | $t_z$  | $\alpha_{x}$ | $\alpha_{y}$ | $\alpha_{z}$ | α     |
|-------------|-----|----------|-------|--------|--------------|--------------|--------------|-------|
|             |     | (voxels) |       |        | (degrees)    |              |              |       |
| Translation | Av. | -        | -     | -      | 0.023        | -0.023       | -0.104       | 0.109 |
| 6 90        | σ   | 0.148    | 0.177 | 0.111  | 0.133        | 0.118        | 0.138        | 0.126 |
| Rotation    | Av. | -        | -     | -      | 1.855        | 1.759        | -0.044       | 2.565 |
|             | σ   | 0.094    | 0.129 | 0.0651 | 0.148        | 0.111        | 0.151        | 0.124 |



#### Comments

Consistency exp/theory on  $\sigma_{w}$   $\sigma_{w}^{th} \in [0.02; +\infty]$   $\sigma_{w}^{exp} \approx 0.1$ (deg) While apparently  $\sigma_{t}^{exp} \gg \sigma_{t}^{th}$ 

But :  $X_i$  is not the exact center of grains

$$\sigma_t(X_i) \approx \sqrt{\left[\sigma_t(X_{center})\right]^2 + \left[\sigma_w \cdot \|X_i - X_{center}\|\right]^2}$$



Application to other images(D50 = 280µm) $\sigma_f \approx 22$  $\frac{\sigma_f}{\Delta f} \approx \frac{1}{4}!$  $\sigma_w^{th} \in [0.35; +\infty]$  (deg) $a \approx 10$  $b \approx 1$  $\phi_w^{exp} \approx 1 \deg$ 

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier



#### Experimental evaluation of S-shaped systematic error curve

- Standard procedure:

difficult to perform Prescribe several real subpixel translations of sample and compare with DIC measurements in practice - More efficient procedure: Prescribe motions to sample or imaging system that generate locally in image an apparent  $u = \frac{n}{L}(x - x_0)$ translation with known characteristics **Rigid rotation or** Simple magnification variation and fast D pixels If  $\frac{n}{<\sim} \frac{0,2}{\sim}$  displacement is sufficiently uniform L pixels *L D* in correlation window n/2 pixels n/2 pixels  $\frac{n}{L}$  and  $x_0$  evaluated (accurately) from overall (apparent) strain Typically : 1 < n < 6Yang et al, 2010, ICEM14

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

Long and

#### 3D application:

## Virtual homogeneous isotropic straining of cylindrical halite sample with Cu markers

GE X-ray 160kV nanofocus tube @  $67kV / 100 \mu A / 6,5 W \pmod{1}$ Flat Panel Varian 2520, @ 1920x1536, 1s/image, average 30 1440 projections (13h scan) Images 1840x1840x992 voxels



(with M. Bourcier, A. Dimanov, LMS ANR Project « MicroNaSel »)





Sample: 10mm Diameter x 20mm Height (imaged zone 6,5mm in height)

M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier

#### Virtual straining:

Virtually deformed image: Same sample, same conditions with imager shifted by 0.9mm + sample shift  $\Delta Y = 100 \mu m$ 

Initial voxel size = 6.5 µm

New voxel size =  $6.48 \mu m$ 

MORE PRECISELY (according to geometry of system) : apparent dilatation = 1.0031962 = ratio of voxelsizes = 6.50022 / 6.47951

This corresponds to ~5 voxels increase in sample diameter

#### Vol-DIC analysis:

Grid: 20 voxels steps, 80x80x47 points = 300800 points, 232683 in sample

Trilinear g.l. interpolation Rigid transformation In-house code (CMV3D)

Various window sizes From20<sup>3</sup> to 50<sup>3</sup> Fixed or adjustable



#### A) Direct processing of original images

Average deformation gradient: (example of result)

(very close to prescribed magnification variation) 0.003196

| 0.003198                      | 0.000441 | -0.000067 |  |  |  |  |
|-------------------------------|----------|-----------|--|--|--|--|
| -0.000087                     | 0.003191 | -0.000009 |  |  |  |  |
| -0.000118                     | 0.000076 | 0.003268  |  |  |  |  |
| (Accuracy better than 0.0001) |          |           |  |  |  |  |

Statistical analysis of local evaluations of displacement

Compare DIC measurements with theoretical displacement

1) Global analysis

2) Local analysis as a function of fractional part of theoretical displacement

Standard deviation on 3 displacement components

Standard deviation + bias on 3 displacement components

## 1) Global analysis

| Window Size              | Std. Dev. X | Std. Dev. Y | Std. Dev. Z |                             |
|--------------------------|-------------|-------------|-------------|-----------------------------|
| 20 <sup>3</sup> constant | 0.158734    | 0.128389    | 0.254016    | Improvement                 |
| 20 <sup>3</sup> variable | 0.146954    | 0.121243    | 0.195838    |                             |
| 30 <sup>3</sup> variable | 0.133726    | 0.106016    | 0.185546    | ]↓                          |
| 40 <sup>3</sup> constant | 0.128136    | 0.100171    | 0.182437    | No<br>significant<br>change |
| 50 <sup>3</sup> constant | 0.126381    | 0.098852    | 0.181389    | <b>↓</b>                    |
| 1000                     | · · ·       | 7           |             |                             |

## 2) Local analysis







#### Bining 2x2x2Window = $10^3$ (= $20^3$ )



Bining 2x2x2Window =  $15^3$  (= $30^3$ )



M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier



M. Bornert, BSSM seminar - Southampton - January 26th, 2012 Navier



#### Simular results in 2D-DIC (with contrast controlled by lens aperture)



**Concluding remarks** 

MicroCT in situ test combined with (Discrete-)DIC provide highly valuable insights for the micromechanics of (geo)materials

Several DIC error sources

We need to understand them, to model them and to quantify them *for real experimental conditions* 

Some simple and accurate procedures are proposed

But still a lot to do....