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Abstract. We present a novel approach to solving for the stress field and material from a measured strain 
field, using a partial differential equation-based approach. This approach is particularly suited for problems 
with heterogenous material properties. The equations have been developed in prior work, but have not been 
widely utilised because of the difficulty coding solvers for particular applications. Here we modify the problem 
formulation, such that we can exploit widely used commercial finite element solvers, dramatically increasing 
accessibility of the method. Furthermore, the solvers are second order accurate, in contrast to first order 
accuracy of previous solvers, and issues of numerical diffusion are essentially eliminated.   
 

Introduction 

Recent advances in full-field measurement techniques such as digital image correlation (DIC) have 
significantly enriched the data available during mechanical testing, enabling researchers to move beyond 
traditional test methods that rely on simplified assumptions of stress uniformity or simple geometry. These 
conventional tests often fall short when materials exhibit heterogeneities, localized deformations, or complex 
nonlinear behaviours like necking and shear banding. To address these limitations, new paradigms have 
emerged under the concept termed "Materials Testing 2.0" (MT2.0), where complex loading and geometries 
are exploited to produce heterogeneous deformation fields that can yield more comprehensive constitutive 
information from fewer experiments [1]. 
 
One promising approach within MT2.0 uses the known eigenvectors of measured kinematic fields (such as 
strain or strain rate) alongside traction boundary conditions to directly solve for unknown stress fields without 
explicitly assuming a specific form of constitutive model [2,3]. Unlike traditional finite element model updating 
(FEMU), which iteratively adjusts model parameters to match observed strains, this method directly solves a 
hyperbolic system of partial differential equations (PDEs) derived from equilibrium conditions. This is 
particularly advantageous for cases of heterogeneous material properties, as the PDEs make no assumption 
that the properties are uniform. 
 
This direct inverse procedure provides stress-strain relationships at each material point with fewer underlying 
assumptions about material behaviour compared to other inverse identification techniques such as the virtual 
fields method [4]. Its non-parametric nature also makes it particularly suited for identifying local variations in 
mechanical properties caused by microstructural heterogeneity or manufacturing-induced variability in 
metallic alloys. 

 
Fig 1. The new calculation procedure which artificially includes time. 

 
A significant practical limitation of the previously developed finite volume method [5] lies in its implementation 
structure. The definition of the problem geometry and the application of traction boundary conditions were 
inherently tied to the specific problem being solved, requiring them to be hard-coded directly into the solver. 



 

This lack of generality presents a substantial barrier for experimentalists seeking to apply the method within 
the Materials Testing 2.0 framework. Adapting the solver to a new specimen shape, or even modifying the 
boundary condition locations or types for an existing geometry, necessitates direct modification of the source 
code, demanding significant programming effort and familiarity with the numerical scheme, hindering wider 
adoption by non-experts. 
 
This rigidity contrasts sharply with the flexibility offered by modern finite element analysis (FEA) packages. 
Contemporary FEA software typically allows users to define arbitrary geometries, often through importing 
standard CAD files or using built-in graphical modelling tools. Boundary conditions can similarly be specified 
on geometric entities (points, lines, surfaces) through intuitive user interfaces or high-level scripting, 
effectively decoupling the problem definition from the core solver engine. Furthermore, the existing finite 
volume implementation [5] was formulated to achieve only first-order spatial accuracy. While sufficient for 
initial demonstrations, first-order schemes can require significantly finer meshes to achieve high precision 
compared to higher-order methods, impacting computational efficiency and potentially limiting accuracy in 
regions with steep stress gradients. 
 
Approach 

The governing equation for the stress field, in two dimensions is: 
 

     div(σ₁ 𝐪₁ 𝐪₁ᵀ + σ₂ 𝐪₂ 𝐪₂ᵀ) = 0, 

                                                                                                                                (1) 
where σ₁ and σ₂ are the principal stresses, and 𝐪₁ and 𝐪₂ are the principal directions. The fundamental 
assumption is that 𝐪₁ and 𝐪₂ are known from the strain. Hence, one has only two unknowns, σ₁ and σ₂, and 

two equations: force balance in the x and y direction respectively. This system is hyperbolic, but not time 
dependant, unlike the vast majority of hyperbolic systems.  

This lack of time dependence is a major problem, as commercially developed finite element code, such 
as COMSOL, is written for time dependant problems. Solvers, such as the discontinuous Galerkin method 
written in COMSOL only accept problems in the form of: 

 

    d𝐮/dt + div(Γ(𝐮)) = 0 
                                                                                                                                (2) 

Where u is a vector and Γ(𝐮) is a matrix. If we choose 

 

Γ(𝐮) = σ₁ 𝐪₁ 𝐪₁ᵀ + σ₂ 𝐪₂ 𝐪₂ᵀ, (3) 

 
then we are close to solving the problem, provided the solver gives steady state solutions. I.e. we run the 

finite element software, until the simulation stops changing with time. This way the d𝐮/dt term will be zero 

and Γ(𝐮) solves the original equation. However, the choice of 𝐮 is non-trivial. We find that 

 

     u = σ₁ 𝐪₁ + σ₂ 𝐪₂ 
                                                                                                                                (4) 
solves this problem. This allows us to utilize COMSOL in order to solve the problem, extracting the 

solution when it becomes steady-state. This leads to an approach that is much easier to apply than 
modifying hard code, can be applied to non-trivial geometry, and is more accurate. We give a demonstration 
of this approach using COMSOL.  
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