

Mechanical and energy-storage properties of carbon nanotube-polymer composites

Dr. Wei Tan

Research Associate, University of Cambridge

Engineering Department, University of Cambridge

Classes of CNT-polymer composites

Why? alignment, waviness, composition, etc

Hierarchical structure of CNT material

Compositional space

• CNT-epoxy composites consist of a mixture of three phases.

CNT/epoxy composite with various composition

CAMBRIDGE

CNT-epoxy composites

- f_B−CNT vol% f_e−Epoxy vol% f_a−Air vol%
- CNT volume fraction mainly changes in the out-ofplane direction

Tensile properties of CNT mat and their composites

Tensile tests

Stress-strain curves

• The mutual effect of **CNT bundles** and **epoxy resin**, together with the intrinsic anisotropy of the network, produce a large variability in its tensile response.

Anisotropy of CNT and CNT-epoxy composite

Tensile response of composites

In-situ test: deformation mechanism of CNT mat

NIVERSITY OF

CAMBRIDGE

3µm

- Rope-like CNT bundles form random interlinked bundle network.
- Network deforms like a foam, with transverse deflection (bending/shear) of struts.

[1] J.C. Stallard, W. Tan, F.R. Smail, A.M. Boeis, N.A. Fleck. *Extrem.Mech.Lett*, 2018 10

Whether epoxy has infiltrated into CNT bundle ?

TEM

EDX mapping

* Epoxy contains silicon side-groups

• Epoxy does not infiltrate into the gaps between adjacent CNTs.

Unit cell model in the finite element analysis

BRIDGE

Calibration of anisotropy and bundle shear strength

- Calibrate the degree of anisotropy ω from measured values.
- Calibrate the shear yield strength of CNT bundle.

Finite element model of each composition

• FE based on the measured volume fraction of CNT and epoxy

Comparison between predication and experiment

• Micromechanical model achieves a reasonable agreement with the measured **modulus** and **yield strength** of CNT-epoxy composite.

[2] W. Tan, J.C. Stallard, F.R. Smail, A.M. Boeis, N.A. Fleck. *Carbon*, 2019 16

The origin for the enhanced bundle shear strength

A significant increase in the longitudinal shear strength of CNT bundles τ_{ν}^{B} .

Interfacial layer

CNT bundles are coated with a sheath of epoxy

[Mikhalchan, Gspann, Windle, 2016]

 $\tau_I = 350-630 \text{ MPa}$

The effect of increasing epoxy fraction

Progressive filling of the pores within the CNT bundle network

1. Increasing epoxy volume fraction f_e , promote the **tension** of CNT bundle, instead of bending and shearing.

UNIVERSITY OF CAMBRIDGE

The effect of increasing CNT bundle fraction

¹⁹

Concluding remarks

- The mechanical properties of the composite are sensitive to **epoxy coating**, the **epoxy volume fraction** within the pores, and the **CNT bundle** volume fraction.
- Micromechanical model achieves a reasonable agreement with measured **modulus** and **yield strength** of CNT-epoxy composite.

Acknowledgement

Colleagues:

Prof. Norman Fleck Mr. Joe Stallard Dr. Harika Tankasala Dr. Adam Boies Dr. Michael De Volder Dr. Fiona Smail Dr. Changshin Jo Prof. Alan Windle

Thank you for your attention !

INIVERSITY OF

CAMBRIDGE

