DEVELOPMENTS

\mathbb{IN}

SEMICONDUCTOR STRAIN

GAUGES

Albert Ellison

Ellison Sensors

Pressure Transducers & Transmitters, Ranges from 0-500mbar to 0-4,000bar TSM

Strain Gauge Manufacture & Supply, In-house or On-site Installation Service SIGTEL

Radio Telemetry Systems Wireless systems for Strain Gauge Sensors

STRESS & STRAIN

- External forces applied to stationary object , results are stress & strain
- Stress is the object's internal resisting forces
 = F/A
- Strain is the amount of deformation per unit length =(\triangle L)/L
- Strain is expressed in micro-strain = strain x 10⁻⁶
- Strain may be compressive or tensile and is typically measured by strain gauges.

DEVELOPMENT OF THE STRAIN GAUGE

- 1850's Lord Kelvin reported metallic conductors when strained exhibit a change in resistance.
- 1930's First bonded wire wound strain gauge followed by metallic foil strain gauge.
- 1959 TSM start manufacture of foil strain gauges
- 1950's Bell Laboratories discovered the piezoresistive characteristics of silicon.
- 1970's first semiconductor silicon strain gauge developed.

BONDED SEMICONDUCTOR STRAIN GAUGE

- Resistance element diffused into substrate of silicon
- Strain gauge element usually not backed.
- Strain gauge bonded to surface with care.

DIFFUSED SEMICONDUCTOR STRAIN GAUGE

- Further development in strain gauge technology.
- Eliminates the need for bonding agent.
- Errors due to creep and hysteresis reduced.
- Uses photolithography & solid state diffusion of boron to produce resistors and track.
- Limited to moderate temperature applications requires temperature compensation .

SILICON-ON-INSULATOR (SOI) SEMICONDUCTOR STRAIN GAUGE

- Next significant development in semiconductor strain gauge technology.
- The resistors and interconnecting track are built on islands of silicon fabricated on an insulating substrate.
- The insulating layer provides isolation between strain gauges and connecting track.
- Silicon-on-Sapphire the first and still the most successful of the silicon-on-insulator technologies.

SILICON-ON-SAPPHIRE (SOS) SEMICONDUCTOR STRAIN GAUGE

- SOS formed by depositing a thin layer of silicon onto a sapphire wafer at high temperature.
- Strain gauges and interconnecting track formed in silicon layer by photolithography & etching techniques.
- Outstanding insulation properties of sapphire substrate.
- Sapphire highly elastic exhibiting no measurable hysteresis, excellent choice for sensors.

What is Sapphire ?

• Sapphire is from the word Greek : sappherios refers to naturally occurring gem of the mineral aluminium oxide Al_2O_3 .

 Single crystal sapphire is purest form of aluminium oxide and is synthetically produced.

- Aluminium oxide (Al₂O₃) powder is heated in a controlled furnace to 2000°C then slowly cooled.
- The result is a sapphire ingot of with a uniform grain structure.

Sapphire ingot

 Czochralski process , Verneuil process

 The ingot is then cut and ground into a wafer.

- C-plane cut perpendicular to the crystal axis (0001) and is used for the production of blue LED and laser diodes.
- A-plane cut 90° to C-plane (1120) provides uniform dielectric constant and high insulation for hybrid microelectronic applications.
- R-plane cut 57° to C plane used for epitaxial deposition of silicon for strain gauge sensors and microelectronics

- R-plane of cut sapphire has oxygen atoms spaced at a distance close to the spacing of atoms in the (100)plane of silicon.
- This feature enables successful growth of silicon on he sapphire wafer.
- The process is known as epitaxial growth

- Epitaxy is the method of depositing a monocrystaline film on to a monocrystaline substrate.
- The term epitaxy comes from the Greek epi meaning 'above', and taxis meaning 'in ordered manner'
- The compatibility between the (1102) plane of sapphire and the (100) plane of silicon enables SOS technology.

COMPARISON OF MECHANICAL PROPERTIES OF SAPPHIRE

		<u>units</u>	Diamond	<u>Sapphire R plane</u>	<u>Spring</u> <u>steel</u>	<u>17-4PH , H900</u>
Compressive Streng	gth	MPa	6000	3000	1800	1000
Young's Modulus		GPa	1100	345	200	197
Hardness H	HV1	GPa	90	25	5	4
Poisson's Ratio		MPa	0.1 - 0.29	0.29	0.27	0.27

Electrical properties of sapphire

Dielectric strength 4.8 x 104 KVmm-1

Bulk resistivity

1 x 1014 ohm-cm

APPLICATION OF SILICON-ON-SAPPHIRE (SOS) STRAIN GAUGE TECHNOLOGY IN THE MANUFACTURE OF

PRESSURE SENSORS

- Resistive strain gauge pressure measurement most popular sensing technique used in the manufacture of pressure sensors.
- Applied pressure causes the deformation of a diaphragm, the deformation is translated into a proportional electrical signal by means of a strain gauge attached to the diaphragm.

- Strain gauge initially cemented to the pressure diaphragm
- 3 component system gage-cement-diaphragm suffers creep and hysteresis

- Demand in industry was for more stable and repeatable sensors.
- Introduction of solid state piezoresistive pressure sensors .

- Solid state silicon piezoresistive pressure sensors offered some improvement over bonded strain gauge type.
- Improved sensitivity and repeatability
- Techniques for production of solid state pressure sensors same as those used for integrated circuits.

- Silicon proven to be one of the most desirable pressure sensing elements .
- Sapphire outstanding elasticity and insulating properties.

- Strain gauges etched in doped silicon epi layer .
- Individual strain gauges are electrically isolated from one another by the outstanding insulating properties of the sapphire substrate.

- Excellent performance at temperatures up to 350°C.
- Excellent repeatability of sapphire diaphragm.

APPLICATIONS OF SILICON-ON-SAPPHIRE (SOS) PRESSURE TRANSDUCERS

Oil Gas & Offshore Pressure Transducers & Transmitters

High temperature operation

Outstanding long term stability

Superior SOS sensing technology

Land, Offshore & Subsea applications

Down hole Wellhead & Control valve sensors

Digital Signal Processing with active digital compensation

