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GUM recommendations 

 Guide to the Expression of Uncertainty in Measurement 

• Current version uses analytical formulae, sensitivity 

coefficients etc. 

• Supplements discuss MC & sampling methods 

• http://www.bipm.org/en/publications/guides/gum.html  

 Main steps: 

• Define inputs, outputs and model linking them; 

• Assign distributions to inputs; 

• Propagate input distributions through the model to give 

statistics of the output quantity. 

http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html


• Define inputs, outputs and 

model linking them; 



Simulation 

 Starts from a question: clearly defined output 

• Location of result of interest may have associated 

uncertainty 

 

 

 

 

 

 

 

 

 Focus here is mostly on FE & related models 



Simulation inputs 

 Governing equations 

• Assume known: calibration/validation issue 

 Solution method & software 

• Assume validated model of the problem exists 

• Mesh converged, time step stable, approximation of a 

high enough order, rounding errors negligible…. 

• Ensure model is validated for any input parameters it 

might receive 

 



Simulation inputs 

 Domain 

• Problem geometry: uncertain 

• Time period/frequency range: 

may be uncertain 

• Could be part of a boundary or 

loading condition 

• Could be a model output 

• Upper limit usually known for 

domain purposes 



Simulation inputs 

 Material properties 

• Parameters: uncertain 

• Underpinning material 

model: often not 

certainly known 

• Better addressed as a 

calibration/validation type 

problem 

• Can sometimes use 

cheap simple models as a 

correction to expensive 

ones (multifidelity 

approach) 



Simulation inputs 

 Boundary & loading 

conditions: uncertain  

• point locations and 

values 

• bond/clamping 

quality 

• timings 

 

 

 

 

 

 



• Assign distributions to inputs 



From information to distributions 

 Use information to assign probability distributions to inputs 

• Measurements, expert opinion, physically reasonable 

bounds, previous model results, … 

 GUM Supplement 1 section 6 

• “Such an assignment can be based on Bayes’ theorem 

or the principle of maximum entropy” 

• Choose a distribution consistent with the information 

that imposes minimal assumptions 

• Examples given for common information types 



Common information types 

 Lower & upper limits [a,b] 

 

 

 

 

 Inexact lower and upper limits [A, B] in [a-d, a+d] [b-d, b+d] 

Uniform distribution 

Mean (a+b)/2 

Variance (b-a)2/12 

Curvilinear trapezoid 

distribution 

Mean (a+b)/2 

Variance (b-a)2/12 + d2/9 



Common information types 

 Best estimate m & associated uncertainty u 

 

 

 

 

 n realisations of a quantity believed to be Gaussian 

Gaussian distribution 

Mean m 

Variance u2 

Student t distribution with 

n-1 degrees of freedom 

Mean m 

Variance s2/n*[(n-1)/(n-3)] 

where s and m are sample mean & variance 



Correlation 

 Requires assignation of a joint distribution 

 Some uncertainty propagation methods cannot handle 

correlation between input variables 

 Where possible, try to identify the cause of correlation & 

parameterise it directly 

• e.g. temperature dependent material properties: treat 

the temperature as random, not the properties as 

correlated 

 Use random fields for spatially correlated variables  

• kriging, Gaussian process modelling 



• Propagate input distributions 

through the model to give 

statistics of the output quantity. 



Propagation 

 Analytical formulae not ideal for FE type models 

Linearised: not OK for lots of models 

Need sensitivity coefficients: not good for black box 

software 

 Monte Carlo not ideal for FE type models 

Computational expense 

 Recent work looked at alternatives 

http://www.mathmet.org/publications/guides/index.php#ex

pensive for problems where can’t afford to do lots of 

model evaluations 

http://www.mathmet.org/publications/guides/index.php
http://www.mathmet.org/publications/guides/index.php
http://www.mathmet.org/publications/guides/index.php


Guide contents 

 Multiple methods 

described 

 Illustrated with a simple 

toy example 

 Longer real world case 

study examples 

• thermophysical 

properties,  

• fluid flow,  

• scatterometry 

 Written for general 

scientist audience 

 Training slides based on 

the guide 





Input screening 

 Design of experiments (DoE), Morris “One at a time” 

designs, Sobol’ indices 

• Define a set of values of the input quantities. 

• Evaluate the model using those input quantity values. 

• Process the results to get information about the sensitivity of the 

output quantities to the input quantities. 

• Identify any insignficant input quantities. 

• Redefine the model & distribution if necessary.  

 

 Extra computational cost.  

• Can lead to better understanding of the model 

• Can reuse evaluations. 

 



Why screen inputs? 

 Can identify input quantities that are not important. 

• Some uncertainty evaluation methods work better for 

fewer input quantities. 

• Reduced model may run more quickly. 

• Sampling over a reduced input space may be more 

likely to be space filling. 

 Understanding sensitivity can provide insight into 

underpinning physics. 

 

 



Method choice 

 Can’t produce definitive advice that applies to all problems.  

 Set of points to consider: depends on what is most 

important for your application. 

 Advice on comparing methods in the guide. 

 

 Methods are not necessarily mutually exclusive: may be 

able to use sampled points as training points for a 

surrogate model.  

 

Choose a 

method.  



Points to consider 

 Number of input & output quantities 

 Method complexity and software availability 

 Prior knowledge of model and input quantities 

 Nature of joint distribution of inputs 

 Historical model evaluations & need for sample size 

flexibility 



Smart sampling 

 Methods for choosing 

input points more 

carefully 

 Importance sampling 

 Stratified sampling 

 Latin hypercube 

sampling 



Problem with small Monte Carlo 

samples 

 Doesn’t span all 

of the sample 

space 

 Large sample to 

sample variation 

X1 uniformly distributed on [0, 1] 

X2 triangular on [0,1] with a mode of 0.25 



Latin hypercube sampling 

Divide each axis 

into n regions of 

equal probability. 

 

Sample once 

within each region. 

X1 uniformly distributed on [0, 1] 

X2 triangular on [0,1] with a mode of 0.25 



Latin hypercube sampling 

Pair the points up 

randomly. 

 

Can pair so as to 

be space filling via 

maximum distance 

criterion 

 

Unbiassed 

estimates, lower 

sample to sample 

variation than MC 

X1 uniformly distributed on [0, 1] 

X2 triangular on [0,1] with a mode of 0.25 



Surrogate models 

 Approximate 

expensive model with 

cheaper one, 

evaluate uncertainties 

using cheap model 

 Response surface 

methodology 

 Gaussian process 

emulators 

 Polynomial chaos 

Choose training points 

x(1), x(2), …, x(K)  

Evaluate model 

y(1)=F(x(1)), y(2)=F(x(2)), 

…, y(K)=F(x(K))  

Use surrogate to 

evaluate uncertainties 



Training points? 

 Can be regular grids 

 Can be randomly chosen (Latin Hypercube) 

 Can be between the two (Hammersley sequences) 

 Space spanning is good 

 Check sensitivity through the “leave one out” method 

 Some modelling methods (Gaussian process modelling) 

supply an error estimate that can be used to guide “where 

next” 

 

 All methods we tried performed well, but we may have 

looked at a nice problem 



Polynomial chaos 

 Has elements of sampling and elements of surrogate 

modelling. 

 Idea is to  

• treat the model output quantities as random quantities 

directly, 

• approximate model output as an expansion of 

polynomials Ψ of random variables ξ,  

 

• evaluate expansion coefficients ai from model 

evaluations at well-chosen points, 

• can derive statistics directly from these coefficients. 

 

𝑌 ≈  𝑎𝑖Ψ𝑖 𝝃 

𝑞

𝑖=1

 



Comparison of methods 

Good method has to be accurate and repeatable 



Conclusions 

 Same steps as any other uncertainty propagation 

• Define inputs, outputs and model linking them; 

• Assign distributions to inputs; 

• Propagate input distributions through the model to give 

statistics of the output quantity. 

 Smart sampling & surrogate models give more reliable 

answers from a small number of model runs than random 

sampling 
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