

Structural Response of CFRP Materials Subjected to Simulated Lightning Strikes

TIMOTHY M HARRELL¹, OLE T THOMSEN², JANICE M DULIEU-BARTON²

T.M.HARRELL@SOTON.AC.UK

¹SCHOOL OF ENGINEERING, UNIVERSITY OF SOUTHAMPTON

²BRISTOL COMPOSITES INSTITUTE, UNIVERSITY OF BRISTOL

14TH INTERNATIONAL CONFERENCE ON ADVANCES IN EXPERIMENTAL MECHANICS

10-12 SEPTEMBER 2019

Why study this?

- Lightning can strike wind turbines up to 30 times per year
- 5 times greater energy than aircraft standard (10 MJ/ Ω)
- <u>Costing operator millions of pounds a year</u> <u>Burning/charring</u> <u>Blade Failure</u>

Southampton CFRP Materials in Wind Turbine Blades

• CFRPs (relative to GFRP) enables longer wind turbine blades with

Lightning in Wind Turbine Blades

- CFRP materials (semi-conductors) provide a different path for lightning to take to ground.
- There are two typical scenarios where lightning enters CFRP perpendicular to the surface, also known as, arc-entry.
 - Scenario 1, direct strike to CFRP
- Arc-entry is the most severe lightning damage mechanism on CFRP as the conductivity severely restricts the flow of current causing heat.

Lightning in Wind Turbine Blades

- CFRP materials (semi-conductors) provide a different path for lightning to take to ground.
- There are two typical scenarios where lightning enters CFRP perpendicular to the surface, also known as, arc-entry.
 - $^\circ~$ Scenario 1, direct strike to CFRP
 - Scenario 2, internal flashover
- Arc-entry is the most severe lightning damage mechanism on CFRP as the conductivity severely restricts the flow of current causing heat.

Aims and Objectives

• Predict structural response of CFRP after a lightning strike:

- Developing experimental procedure
- Development of modelling framework
- Compare/Validate

Simulated Lightning Strike Experiments

- 14 x CFRP unidirectional (UD) eight ply laminate
 - 800 gsm fabric
 - Epoxy Resin Matrix
- 550 mm long x 500 mm wide x 7 mm thic
- 10/350µs waveform
- Peak Current shown:
 - 50kA
 - 125kA

Simulated Lightning Strike Experiments

- 14 x CFRP unidirectional (UD) eight ply laminate
 - 800 gsm fabric
 - Epoxy Resin Matrix
- 550 mm long x 500 mm wide x 7 mm thick
- 10/350µs waveform
- Peak Current shown:
 - 50kA
 - 125kA

Simulated Lightning Strike Experiments

- 14 x CFRP unidirectional (UD) eight ply laminate
 - 800 gsm fabric
 - Epoxy Resin Matrix
- 550 mm long x 500 mm wide x 7 mm thick
- 10/350µs waveform
- Peak Current shown:
 - 50kA
 - 125kA

Damage Assessment of Lightning

- Damaged samples:
 - $^{\circ}\,$ Assessed via visual inspection and CT scans.
 - Waterjet cut to remove the chamfered edge and centre the damage.
 - $^\circ~$ Representative of the typical lightning damage seen in literature [1] [4]

T. M. Harrell et al | BSSM14 | 10-12 Sep 2019

Compression After Lightning Strike (CALS)

- Lightning damage worst effects are seen in compression
- Rig large enough to evaluate structural scale effects
- Instron Schenck test rig 630kN load capacity
- Loaded in compression 0.5mm/min
- Stereo DIC was performed on both sides of the plate

11

Southampton

Compression After Lightning Strike (CALS)

- Compression After Lightning Strik
- Lightning damage worst effects ar compression
- Rig large enough to evaluate struc
- Instron Schenck test rig 630kN loa
- Loaded in compression 0.5mm/m-
- Stereo DIC was performed on bot

DIC Test Setup	
	2 x Stereo 3D Image Correlation
Technique Used	(2 cameras measuring top surface and 2
	cameras measuring bottom surface)
Camera	4 x MANTA G504B (gigabit Ethernet)
Sensor	12 bit, 2452 x 2056 pixels
Lens	2 x AF NIKKOR 28mm F/8D
	2x AF NIKKOR 50mm F/8D
Lightning	4 x NILA ZAILA LED Lights
Imaging distance	~2 m from bottom surface
inaging distance	~4m from top surface
Field of View	400 mm x 400 mm x 100 mm
Pixel resolution	\sim 1px = 0.27 mm
Correlation Setup	
DIC Software	MatchID 2018.2.2
Correlation Procedure	Zero Normalized Sum of Differences Squared
Subset Size	33 px
Step Size	16 px
Sub-pixel interpolation	Bicubic Spline
Shape Function	Quadratic
Stereo Transformation	Quadratic
Strain Calculation	Logarithmic Euler-Almansi strain tensor
Displacement Noise Floor (u, v, w)	(0.026227, 0.0089122, 0.13067) mm
Strain Noise Floor ($\varepsilon_{xx}, \varepsilon_{yy}, \gamma_{xy}$)	(150, 95, 120) μm/m

Southampton

Numerical Modelling

- Shell post-buckling finite element model with large deformations
- Abaqus 6.14 Riks Method with S4R shell elements
- The area of the damage was assessed using the visual inspection and CT
- Damaged areas taken into account by reducing stiffness to essentially zero

Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.

Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.

Out of Plane Displacements

- The most severely damaged specimen (lightning strike of 125kA) for all load levels showed:
 - highest displacement levels
 - a change in the displacement field moving away from the damaged region.

Conclusions

- Designed and manufactured novel CALS rig to include structural scale effects on CFRP materials damaged by lighting
- DIC enables capture of the redistribution away from the damaged region
- Damage induced is representative of lightning and able to quantify the buckling and post-buckling response
- The validation of the FEM creates opportunity to study other damage scenarios.

THANK YOU FOR YOUR ATTENTION

This research presented was sponsored by the Marie Skłodowska Curie Actions, Innovative Training Networks (ITN), H2020-MSCA-ITN-2014, grant award number 642771, as part of the project "Lightning protection of wind turbine blades with carbon fiber composite materials" (SPARCARB).

Contact: Timothy M Harrell, <u>T.M.Harrell@soton.ac.uk</u> Researchgate: <u>https://www.researchgate.net/profile/Timothy_Harrell</u>

European Commission

References

- [1] L. Chemartin *et al.*, "Direct Effects of Lightning on Aircraft Structure : Analysis of the Thermal , Electrical and Mechanical Constraints," J. Aerosp. Lab, no. 5, pp. 1–15, 2012.
- [2] P. Feraboli and M. Miller, "Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike," *Compos. Part A Appl. Sci. Manuf.*, vol. 40, no. 6–7, pp. 954–967, 2009.
- [3] A. C. Garolera, S. F. Madsen, M. Nissim, J. D. Myers, and J. Holboell, "Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S.," *IEEE Trans. Power Deliv.*, vol. 31, no. 3, pp. 1043–1049, Jun. 2016.

[4] International Electrotechnical Commission, "IEC61400: Wind turbine standard," 2014.