

Strain mapping with Polarisation-Sensitive Optical Coherence Tomography

David Stifter

Center for Surface and Nanoanalytics (ZONA)

Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization (CDL-MS-MACH)

Johannes Kepler University (JKU) Linz, Austria

Acknowledgements

- E. Leiss-Holzinger, K. Wiesauer: Recendt GmbH, Linz, Austria
- B. Heise, S. Schausberger, B. Buchroithner: CDL-MS-MACH, JKU Linz, Austria
- Z. Major: Inst. Polymer Product Engineering, JKU Linz, Austria
- B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger: Med. Univ. Vienna, Austria
- Funding sources:
 - Austrian Science Fund (P16585-N08, P16776-N02 and P19751-N20)
 - EC (FP6 COOP-CT-2003-507825)
 - European Regional Development Fund (EFRE) and federal state Upper Austria
 - Austrian Federal Ministry of Economy, Family and Youth
 - National Foundation for Research, Technology and Development

Outline

- Introduction to optical coherence tomography (OCT)
- Extension of OCT towards polarization-sensitive imaging (PS-OCT)
- Application of PS-OCT for strain mapping and dynamic material characterization
- Conclusion and outlook

Laser interferometry

White light (low coherence) interferometry (WLI/LCI)

5

Principle of OCT

 \rightarrow D. Huang et al., Science 254, 1178 (1991)

OCT depth profile: A-Scan

OCT cross-section: B-Scan

Sequence of A-Scans leads to: cross-sectional image (B-scan)

OCT: lateral resolution

 \rightarrow decoupled from axial (depth) resolution

 \rightarrow determined by spot size

OCT depth (axial) resolution

Axial resolution δz (decoupled from lateral resolution):

$$\delta z = \frac{l_C}{n_{Medium}} = \frac{2\ln 2}{n_{Med}\pi} \frac{\lambda_C^2}{\Delta \lambda}$$

 I_c ...coherence length, λ_c ...central wavelength, $\Delta\lambda$...spectral width, n...refractive index

OCT: high sensitivity

- → Incident power ~ 1 mW
- \rightarrow 5-15 scattering events
- → High dynamic range
- → High sensitivity (~100 dB, femtoWatt detectable)
- → Penetration depth in scattering media ~ mm range (depending on wavelength and material)

OCT: high sensitivity

Intensity-based measurement method (e.g. fluorescence microscopy):

• Detector: P1/P2 = 1:100

<u>OCT:</u>

- Signal ~ Eref * Esample \rightarrow P1/P2 = 1:10 !
- Signal E_{sample} multiplied with reference field \rightarrow coherent amplification

Micro-imaging techniques

Origin of OCT: biomedical diagnostics

Ophtalmology:

Diseases of retina (glaucoma)

Dermatology:

Skin cancer, melanoma detection

Pircher et. al., OPT. EXPRESS 12, 5940 (2004)

OCT for material characterization

Main applications: **bio-medical** (retina, skin, arteries, teeth, ...)

Material investigation?

Polymers, compound materials, ceramics, glasses...

 Sizes in the range of a few microns (diameters of fibres, size of inclusions, thickness of layers)
→Ultra-high resolution OCT
Additional information and contrast: e.g. internal strain
→Polarization-sensitive OCT

On-line inspection: short measurement times (FD-OCT)

Time-Domain versus Fourier-Domain (Spectral-Domain (SD))

20.000-100.000 A-scans/s

Time-Domain versus Fourier-Domain (Spectral-Domain (SD))

Image-size: 1 Mpxl

Polyolefin foam

First TD-OCT (with SLD): 500 seconds

TD-OCT (UHR): 2 seconds

SD-OCT (UHR): 0.036 seconds

SD-OCT: tensile testing

Polypropylene with elastomer particles

Polarization-sensitive SD-OCT

19 Johannes kepler | JKU UNIVERSITÄT LINZ | JKU

PS-OCT: 3 images (injection moulded polymer part)

Stress & Retardation Images

Photoelasticity

PS-OCT

Bended polymer structure imaged by PS-OCT (Retardation image)

PS-OCT: strain/stress - birefringence

σ = 0.9 MPa

σ = 4.9 MPa

PS-OCT: orientation of optical axis

SD-PS-OCT: tensile testing (external defect)

SD-PS-OCT: tensile testing (internal defect)

Quantification: Birefringence calibration

2D-image processing for PS-OCT

Reconstruction Procedure

(1) Pre-processing

- Median filtering
- CED-based denoising
- Background correction

(2) Demodulation

- Quadrature component (Radial HT)
- Orientation estimation
- Unwrapping

(3) Differentiation

- Numerical differentiation
 - Birefringence→Stress

Quantitative SD-PS-OCT: tensile testing

PS-OCT: bent polymer structure

- a) Original retardation image
- b) Denoising: Coherence enhancing diffusion (CED)
- c) Quadrature image
- d) Retardation: wrapped phase
- e) Retardation: unwrapped phase
- f) Stress image

Surface and interface stuctures

en-face scans (~3x3mm²)

30

PS-OCT: strain mapping in micro-photoresist moulds

31

JKU

JOHANNES KEPLER UNIVERSITÄT LINZ

PS-OCT: process optimisation (minimizing strain)

Intensity

Retardation

Orientation

32

JKU

JOHANNES KEPLER UNIVERSITÄT LINZ

PS-OCT: stress quantification

JNIVERSITÄT LINZ

Observation of damage formation

Glass-fibre composites (GFCs)

\rightarrow crack-formation due to loading tests

Increased birefingence in fibre bundles near crack

Glass-fibre composites (GFCs)

released

Dynamic fracture test (glass fiber composite)

Conclusion

- Application to different types of materials and parts:
 - Bulk polymer parts, fibre composite materials, laminates and multilayer systems,...
- PS imaging for
 - PS additional contrast
 - Depth resolved strain/stress mapping
- SD-OCT for
 - High-speed imaging
- in progress:
 - Improvement of quantification

