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Introduction 

Synchrotron radiation micro-computed tomography (SRμCT) experiments have gained popularity for analys-
ing 3D fracture patterns in bone at the microscale [1]. This technique provides exceptional spatial resolution, 
enabling detailed analysis of bone microarchitecture and crack initiation and propagation. However, the inter-
action between ionising radiation and bone tissue induces structural damage, even in the absence of me-
chanical loading [2]. This phenomenon creates a substantial challenge when investigating fracture mecha-
nisms, as the observed damage may result from both mechanical testing and radiation exposure. Thus, de-
coupling mechanical and radiation-induced damage is crucial to identify the mechanisms influencing bone 
fracture resistance. Here, we investigate local mechanical and compositional changes in cortical bone at in-
creasing radiation doses aiming to develop a damage model that incorporates radiation-induced effects to 
explore bone fracture mechanisms at the microscale. 

Materials and methods 

Cortical bone bending samples (11 x 2 x 1 mm3) from ovine femur were machined in longitudinal and trans-
verse directions (n = 15/orientation) and notched to form an initial crack (Figure 1a). In situ SRμCT three-
point bending testing was performed at beamline I13-2 (Diamond Light Source, UK) via a micromechanical 
loading stage (Deben CT500) with specimens immersed in PBS solution to simulate physiological conditions 
(Figure 1b). Specimens were loaded in ~2 N steps, and one to four SRμCT images (0.81 μm voxel size, 
2250 projections, 0.2 s/projection) were acquired after mechanical relaxation, resulting in total exposures 
ranging between 450 s and 1800 s. The cumulative absorbed dose was simulated using the Monte Carlo 
code FLUKA [3] with a statistical uncertainty below 10%. The X-ray undulator spectrum used in the FLUKA 
subroutine were obtained with the XOPPY Python library [4] based on U22 undulator parameters [5], incor-
porating filters (0.95 mm pyrolytic graphite, 2 mm aluminium, 50 µm iron) and platinum mirror (4.6 mrad) with 
2 x 2 mm slit size positioned 220 m from the source (200 mA storage ring current) resulting in a total flux of 
3.64×1011 photons/s.  

 

Figure 1 a) Schematic of bone sample preparation in both transverse and longitudinal orientations with 
respect to the main bone axis. b) Diagram of three-point bending test conducted at beamline I13-2. c) Dia-
gram of indentation arrays performed in regions close to the notch and edge of each sample. 
 
Following the SRμCT experiment, wet microindentation [6] was performed with a Berkovich tip (Alemnis AG) 
on the high (notched) and low irradiated (edge) sides of half of each specimen (Figure 1c). The indents were 
arranged in a 4 × 4 array with a 50 µm separation on each side. Testing was conducted on three samples for 
each experimental group (exposure time group) and bone orientation (transverse and longitudinal). Welch's 
t-test was used to compare measured indentation modulus and contact hardness at edge and notch loca-
tions within groups and Welch's ANOVA to examine the effect of exposure time on modulus and hardness, 
with p-values adjusted for contrasts between exposed and control groups. Significance level was selected as 
p = 0.05. 

 



 

Results 

Simulated radiation dose rates were non-uniformly distributed, with average dose rates ranging from 5 Gy/s to 
30 Gy/s at the edge and notched regions, respectively, after a full SRμCT acquisition (Figure 2). The total 
absorbed dose ranges between 3.8 kGy and 15.5 kGy for one to four tomograms, respectively, corresponding 
to exposure times of 450 s and 1800 s. Microindentation measurements revealed significant changes in me-
chanical properties. In the transverse orientation (Figure 3b, top), significantly higher (p<0.001) indentation 
modulus and contact hardness was observed at the edge locations (6.7 kGy at 1350 s and 9 kGy at 1800 s) 
compared to the notch locations (40.5 kGy at 1350 s and 54 kGy at 1800 s). In the longitudinal orientation 
(Figure 3b, bottom), significant differences (p≤0.027)  were detected in the control (no exposure), 900 s expo-
sure (edge: 4.5 kGy and notch: 27 kGy), and 1800 s exposure (edge: 9 kGy and notch: 54 kGy) groups, with 
significantly large variations in contact hardness across most groups (p≤0.004), excluding the 450s group 
(p=0.844).  The post-hoc analyses for Welch’s ANOVA revealed significant reductions in indentation modulus 
in transverse and longitudinal directions at the notch for the longest exposure time group compared to the 
control (p<0.001), with mean reductions of 54% and 9%, respectively. Similarly, contact hardness decreases 
by about 73% and 41%.  
 

 
 
 
 
 
 
 
Figure 2 a) Dose rate distribution after full SRμCT acquisition (180° rotation) from FLUKA Monte Carlo simu-
lation. b) Indentation modulus at increasing exposure to SR X-ray radiation in transverse and longitudinal ori-
entations (n=3 samples/exposure time group).  

Discussion 

The difference in mechanical response to X-ray radiation depending on bone orientation indicates aniso-
tropic behaviour, with the transverse orientation showing less resistance to radiation damage. The significant 
reduction in indentation modulus at the longest exposures indicates radiation-induced softening near the 
notch, which may accelerate crack propagation. This softening may result from ionisation changes in the 
non-fibrillar matrix [1]. Future work will combine microstructural and compositional analysis, as well as image 
analysis and digital volume correlation of the obtained SRμCT images (Figure 3) to further assess the effect 
of X-ray radiation on bone properties. Ultimately, these findings will be used to develop a computational 
model of bone fracture that accounts for X-ray radiation-induced damage. 
 
 
 
 
 
 
 
 
 
Figure 3 SRμCT cross-sections showing crack propagation (red arrows) under the notch in (a) transverse 
and (b) longitudinal orientations. 
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