Measurement of the whole strain tensor by a 6-axis embedded sensor
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Abstract. We propose a concept of a 6-axis sensor allowing the measurement of the complete deformation
tensor (6 components). This sensor is weakly intrusive and only minimally disturbs the strain field around it. It
is based on six regularly spaced rings, which can be resistive, optical or even acoustic. The proposed study is
for the moment theoretical, but gives the mathematical relations necessary for the measurement and details
the expected performance of the sensor in terms of accuracy.

Introduction

Strain measurements are usually made on the surface, with the exception of X-ray tomography (3D-DIC)
measurements. However, they require an intense energy source and an internal microstructure which is not
always available. As a result, there is a need for physical deformation sensors embedded in the material.

Existing embedded transducers are mostly 1D and generally have a halter-shaped test body that strongly
disturbs the strain (or stress) field around them. We have previously proposed and experimentally tested [1, 2]
a 6-axis, spherical-shaped sensor that allows the measurement of the complete strain tensor. While Eshelby's
theory allowed us to analytically trace the strain tensor "at infinity", i.e. in the absence of the sensor, this
spherical inclusion nevertheless implied a high concentration of stress and a risk of disbonding at the interface.

Recently, we have shown the feasibility of deformation measurement using fibre optic rings [3]. This new
arrangement can also be applied to other sensor technologies (resistive wires, acoustic measurement...). In
this communication we show the operating principle, the equations allowing to pass from the transducers
information to the deformation tensor of the matrix, we prove the isotropy of the measurement as well as an
evaluation of the perturbation generated by the sensor.

Principle

The sensor consists of six rings arranged in the symmetry of an icosahedron:

Fig. 1 Sketch of the 6-rings strain sensor

The elongation AL of each ring i of length L is measured by a transducer whose technology is not specified.
The ring may be the transducer itself (e.g. with resistive wire technology) or it may be a test body supporting
the transducer (e.g. a strain gauge or a fibre bonded to an elastic ring).

Assuming that the matrix undergoes a homogeneous deformation at the scale of the sensor and that the rings
do not disturb this deformation of the matrix, the link between the components of the deformation tensor and
the relative elongations of the rings is:

£11 2 2 p-19-1 —p -y AL, /L
£92 - - 2 2 -1 p-—1 ALs/L
ezz| _lle—-1 -1 —p —p 2 2 . ALz/L
eaz| 2 |1-202p—-1 0 0 0 0 ALy/L
£a1 0 0 1-22 -1 0 0 ALs/L
£12 0 0 0 0 1—2(,02(;7—1 AL()/L

1)

Where ¢=(1+R*?)/2 is the golden ratio.



Isotropy of the sensitivity

A strain sensor must be equally sensitive regardless of the direction of the strain. By direction, we mean the
direction of the principal strains. This requires that the magnitude of the response of the transducers depends
only upon the magnitude, i.e. the Euclidean norm of the measured strain. As a consequence, we define the
internal sensitivity of the sensor as:
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From (1) it follows that:
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where ek denotes the Bechterew (or Kelvin) representation of the component of the strain tensor: &= i and
ex= 2% if i#. Furthermore, the expression of C is:
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Where PP and PH are respectively the deviatoric and hydrostatic fourth-rank projectors. Being both isotropic,
this proves the isotropy of the sensor as defined above. However, this also implies that the sensor is more

sensitive, thus - in a user point of view - more precise, to a hydrostatic strain (s=1.414) that to a deviatoric one
(s=0,447).

Matrix strain perturbation

The minimalist shape of the sensor already suggests a weak perturbance of the strain field in the matrix. It is
shown, with a semi-analytical method based on the Kelvin point-force solution, that the relative perturbation is,
at a distance 2R from the center of the sensor:
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Where E;is the Young modulus of a ring, E the one of the matrix, S the cross section of a ring, and R its radius.
With a thin wire technology, p can be easily close to 103. A similar study also shows that the singularity
generated by the presence of the sensor is limited in the close neighborhood of the rings. As a consequence,
the is no need for this sensor to know the elasticity of the matrix as it was the case with the previous Eshelby-
type spherical sensor.

Conclusion

The proposed 6-rings sensor architecture allows the measurement of the whole strain tensor within a bulk
body with a minimal perturbation and an isotropic sensitivity. Various type of transducers can be used however
it is better to minimize the ring section and prefer transducers which measure the mean ring deformation (i.e.
its elongation) than ones that measure a local deformation. However, many technological aspects remain to
be solved, such as the ring adherence, the prevention of any micro-buckling which may occur in compressive
states, although this is helped by the low volume fraction if the rings are thin [3].
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