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Abstract. Although there are many publications documenting the theory of Digital Image Correlation (DIC), 
there is a lack of resources bridging the gap between the theory of DIC and its practical implementation as 
code. Two papers have been published, for 2D and Stereo-DIC respectively, which discuss the theory of a 
subset based DIC framework that is predominantly consistent with current state-of-the-art techniques, and 
explain how it is implemented as modular 117 line and 202 line MATLAB codes respectively. This aims to 
provide newcomers to the concept of DIC with the resources required to gain a deep understanding of DIC 
which is necessary to contribute to the field of DIC. 

Introduction 

Digital Image Correlation (DIC) has become popular in experimental solid mechanics applications to 
determine the full-field displacements experienced by a specimen from images captured of it. However, 
despite its popularity, the DIC process is complicated, comprising of several intricate elements, and 
successful application of DIC requires an understanding of all of these elements. To this end there are 
several publications which provide a comprehensive discussion of the mathematical theory of DIC [1] which 
along with the good practices guide [2] provides newcomers to DIC with sufficient knowledge to apply DIC 
successfully. However, in order to contribute to the field of DIC, by improving DIC for established applications 
or extending its use to novel applications, requires a deep understanding of DIC. Gaining such a deep 
understanding is cumbersome due to the lack of resources which directly bridge the gap between the 
mathematical theory of DIC and its coded implementation. More specifically, although some papers provide 
code consistent with the theory presented [1], these codes focus on robustness and ease of use which, 
despite making them more suited to real world applications, makes them ineffective as a learning resource.  

This lack of resources acts as a barrier to newcomers intending to further the capabilities of DIC, thereby 
limiting the development rate of the field. It is for this reason that the authors have published two papers, for 
2D [3] and Stereo-DIC implementations [4] respectively, which bridge the gap between the theory of DIC and 
its practically implementation as MALAB code. This is achieved by presenting the theory of a subset based 
DIC framework, that is predominantly consistent with current state-of-the-art techniques as identified by Pan 
[5], and detailing how the framework is implemented as a 117 line 2D-DIC (ADIC2D) and 202 line Stereo-
DIC code (ADIC3D). 

Introduction 

Stereo-DIC determines the in-plane and out of plane displacements experienced by the specimen from 
image pairs capturing the specimen simultaneously from different views. In contrast, 2D DIC determines the 
in-plane displacements of the specimen from images capturing a single view of the specimen. DIC consists 
of three main tasks: calibration, correlation (used for temporal and stereo matching) and displacement 
transformation. Both implementations perform calibration according to Zhang’s method [6]. Furthermore, 
both make use of the inverse compositional Gauss-Newton optimisation method to find the shape function 
parameters (SFP) which minimise the zero-mean normalised sum of squared difference correlation criterion 
(in order to perform correlation). For temporal matching, utilised by both ADIC2D and ADIC3D, the Phase 
Correlation Method is used to determine SFP initial estimates. For stereo matching, exclusive to ADIC3D, 
the scale-invariant feature transform [7] feature matching method is used to obtain SFP initial estimates.  

Displacement transformation translates the pixel displacements within the images, determined by 
correlation, to metric displacements in the real world. ADIC2D makes use of the inverse of the camera model 
used during calibration to transform the displacements. ADIC3D uses both the polynomial and linear 
triangulation methods [8] to determine the 3D metric displacements experienced the specimen. 

The novelty of the framework is its modularity which is threefold. Firstly, each main task is performed by a 
separate subroutine resulting in an open-source code that is in the form of an open framework. This allows 
the reader to progressively build up their understanding of the code by considering one subroutine at a time 
and makes understanding the link between the code and theory straightforward. Additionally, this allows the 
user to easily change the code according to their needs, which coupled with the validation of the code, 
makes it attractive as a starting point to develop the capabilities of DIC. 

Secondly, the shape function (SF) order, image filtering parameters and interpolation method can be 
easily changed enabling the reader to investigate how these affect the computed displacements in the 
practical manner. Thirdly, the SF order, subset shape and subset size can be assigned on a per subset 



 

basis. This facilitates easy coupling with adaptive strategies in order to assign these parameters to each 
subset such that they are most appropriate for the speckle pattern and deformation that the subset is 
attempting to track. This is reasoned to be valuable because adaptive subset size and SF order selection 
was identified by Pan [5] as one of the main remaining problems for subset based DIC. 

Validation 

ADIC2D was validated using samples 1, 2, 3 and 14 of the SEM 2D DIC Challenge [9] while ADIC3D was 
validated using Samples 1, 2 and 5 of the SEM Stereo-DIC Challenge [10]. Here the results for Sample 14 of 
the SEM 2D DIC Challenge are presented because they reflect the capabilities of the correlation aspect of 
both implementations of the framework. The errors are reported as the root-mean square error (RMSE) and 
standard deviation (STD) indicating the precision and accuracy respectively. Sample 14 contains a 
sinusoidal displacement field with increasing frequency to investigate how the code compromises between 
noise suppression (STD) and spatial resolution (SR). In accordance with [9] SR refers to the highest 
frequency, of the sinusoid, at which the code is capable of capturing the peak displacement and strain within 
95% and 90% of the true values respectively. Table 1 presents the results for subset sizes of 31, 51 and 71 
pixels (to reflect how the subset size affects the compromise between SR and noise suppresion) using the 
first-order SF along with the results for code A and G which were the best codes in terms of noise 
suppression and SR respectively [9]. The framework applied Gaussian filtering to the images with a window 
of 5 pixels and a Gaussian distribution with a standard deviation of 0.4. SR is reported as the period in pixels 
so that smaller values indicate better performance for all the tabulated metrics. It can be seen that ADIC2D 
has precision, accuracy and SR falling in-between codes A and G. Thus, it performs with sufficient precision 
and accuracy to be considered reliable enough for use in experimental solid mechanics applications. 
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Code G 0.010 0.010 0.012 100 453 429 923 74 

ADIC2D 31 0.014 0.013 0.017 160 600 335 1674 182 

ADIC2D 51 0.014 0.007 0.033 257 839 193 2720 233 

ADIC2D 71 0.022 0.005 0.059 354 1255 125 4412 294 

Code A 0.022 0.005 0.056 716 1131 172 3399 410 

Table 1 – Noise suppression vs spatial resolution results for ADIC2D for Sample 14 

Conclusion 

Although these paper does not contribute novel theory to the field of DIC, it attempts to improve upon one 
of the barriers that is potentially limiting the rapid advancement of the field. More specifically, although the 
theory of DIC is well documented in literature, there is a lack of resources which attempt to bridge the gap 
between its theory and practical implementation as code. This acts as a barrier to newcomers intending to 
gain the deep understanding necessary to contribute to the development of DIC. In addition to serving as an 
educational resource, the modularity of the code coupled with its validation makes it attractive as a starting 
point to develop the capabilities of DIC. 
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