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Aim: To obtain the mechanical properties of soft polymers and their composites
at high strain rates using simple, reliable, quasi-static experiments.

Why? Conventional techniques for high strain rate experimentation for soft
materials do not give accurate measurements due to experimental artefacts.

How?

Get polymer

Experimental

DMA: Dynamic
Mechanical Analysis

Constitutive Modelling

TTS: time-temperature
superposition

QS: Quasi-static

Use DMA and the Combine with QS
TTS technique to experimental data
obtain master to obtain relevant

Predict the material
response at any

Neoprene rubber test
material to develop initial
modelling framework [1,2]

Plasticised PVC from a
previous study [3] to refine
the framework [4]

curve/shift factors model parameters suitable rate

[1] Trivedi, A.R. & Siviour, C.R., 2018. Framework for analyzing hyper-viscoelastic polymers. In AIP
Conference Proceedings

[2] Trivedi, A.R. & Siviour, C.R., 2017. A framework for analysing hyper-viscoelastic polymers, in
Constitutive Models for Rubber X

[3] Kendall, M.J. & Siviour, C.R., 2014. Rate dependence of poly(vinyl chloride), the effects of
plasticizer and time-temperature superposition. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences.

[4] Trivedi, A.R. & Siviour, C.R., 2018. Predicting the high strain rate response of plasticised
poly(vinyl chloride) using a fractional derivative model. EPJ Web of Conferences, 183, p.01013.
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Plasticised and unplasticised PVC
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Rate-temperature equivalence

Results of varying temperature tests Results of varying rate tests
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DMA experiments
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Modelling framework

Needed: Delivered by:
« Hyperelasticity for large « Langevin chain statistics
strain behaviour

» Viscoplasticity for rate « Mulliken-Boyce [5] model
dependent plasticity basis

» Viscoelasticity for rate * FD model fit to the DMA
dependent elasticity experiments

Viscoelastic modulus

« Effects of adiabatic heating

and subsequent temperature changed based on shifts
rise leading to thermal derived from temperature rise
softening

[5] Mulliken, A.D. & Boyce, M.C., 2006. Mechanics of the rate-dependent elastic—plastic deformation of glassy polymers from low to

high strain rates. International Journal of Solids and Structures
Constitutive Modelling
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Fractional Derivative (FD) model

10-term fractional SLS model
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* Empirical data

--FD fit to o component
--FD fit to trans-a-3
~~FD fit to 3 component
FD a + 0.5xtrans
FD g+ 0.5xtrans
—Prony fit to E'
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Iog10 [Frequency (Hz)]

E. E, E; E; E; E; E, E; Es Ey
30.39 113.9 114.9 1277 160.7 207.3 210.8 209.1 191.1 138.2
Prony series Eo En Ein Eis Eyy Eis E Ey Ex Ew
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Constitutive Modelling
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Modelling results: Langevin

« Two parameter Langevin hyperelasticity
« Fit to quasi-static compression test
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Stress (MPa)

Alpha parameters are
fit only to low rate data
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Time-Temperature Superposition principle is key to this approach

Constitutive Modelling
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Adiabatic effects

« At higher rates, compression transitions
from isothermal to adiabatic

187
« Two fits either side of the Tg on the DSC 16l
results were used to approximate the » CPeETer
heat capacity of the PVC %
o127
« All mechanical work assumed to be z 1
o ©
converted to heat; temperature rise 508 ~
calculated assuming adiabatic process To6 Cp = AeET + GeDT ,
- —Rev. Cp
. 0.4 Nonrev. Cp
« The temperature rise leads to thermal -Fit T<T_
. 0.2
softening of the modulus as shown it T>T
0 | . ‘
-50 0 50 100 150
DSC: Differential Scanning Calorimetry Temperature (°C)
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High rate prediction and validation
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Results of varying temperature tests Results of varying rate tests
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Glass filled natural rubber
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Composite experiments
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Conclusions

» Modelling framework has been effective at predicting not only the yield stresses the full
stress-strain response of high rate compression experiments

« A new modelling framework has been presented that minimises parameterisation to purely
simple, quasi-static reliable experiments.

» A Fractional Derivative model has been used to enable a reduction from 25 parameters of
the conventional Prony series to only 10 parameters

« The Mulliken Boyce model has been used as a foundation and modified with the addition of:
» Dynamically adjusted heat capacity
« Temperature dependent modulus reflected in modelling process with use of DMA data

Challenges (i.e. Future research opportunities):

« Constant activation energy in model for a and g components despite spectrum of relaxations
 Very sensitive to C, and Taylor-Quinney coefficient values

» Adapt model to (un)filled natural rubber incorporating a damage effect
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