Imperial College London

Digital Volume Correlation based on MRI: A non-invasive methodology enabling measurements of internal strains in human intervertebral discs

S. Tavana^a, J.N.Clark^a, N. Baxan^b, N. Newell^a, S. D. Masouros^b, B. Freedman^d, U. Hansen^a

^a Dept. of Mechanical Engineering, Imperial College London, UK
^b Biomedical Imaging Centre, Dept. of Medicine, Imperial College London, UK
^c Dept. Bioengineering, Imperial College London, UK
^d Mayo Clinic, Rochester, MN, USA

YSA competition Belfast, Irleand September 2019

Low back pain is the leading cause of disability

- Lifetime risk is 75% ¹
- Costs the NHS £500 million annually ²

Link between low back pain and disc degeneration ³

Why are we interested in disc strains?

- Understanding mechanical effects of disc degeneration
- Designing/evaluating surgical techniques and implants
- Identifying failure mechanisms and evaluating the risk spinal fractures
- Disc strains can serve as a predictor for a range of spinal diseases

What do we already know?

- Internal behaviour has been quantified using:
 - Wires through discs¹
 - Cut in half pushed up against Perspex²
 - Pressure sensors pushed through disc³
 - Finite Element models⁴
 - DIC (2D)⁵⁻⁷

3. Sato et al. 1999

4. Yang et al. 2019

5. Yoder et al. 2014

6. O'Connell et al. 2007

What do we not know?

- How does the 3D internal strains of the disc change with degeneration
- Is there any relationship between strain distribution within the disc and failure mechanism of spine

- Determining the reliability of using DVC based on MRI for measuring internal 3D strains in human discs
- Identify differences in internal strains between degenerate and non-degenerate discs
- Perform failure tests to determine whether there is a correlation between locations of high strain and failure location

Samples and Scans

- 10 human lumbar discs
 - 5 degenerate (Pfirrmann grade ≥ 3)
 - ★ 5 non-degenerate (Pfirrmann grade \leq 2)
- 9.4T MRI scans
 - Unloaded
 - Unloaded repeat
 - 1kN of load
 - After axial compression to failure

T2 weighted 90 x 90 x 800 um voxels Scan time = 17 mins

MRI Compatible Loading Rig

Benchtop Loading Device

Digital Volume Correlation (DVC)-Zero Strain Study

Digital Volume Correlation (DVC)

- Accuracy & precision study to find optimum subset size
 - 56 voxels
 - 2.52mm edge length
 - >1000 subsets per disc

DVC matched well with manual measures

Unloaded and Loaded MRIs

Degenerate

1KN axial load

Non-Degenerate

Axial Strains

- ↑ Peak Strain in Degenerate
- Particularly in AF

0

4

8

12

Axial Compressive Strain (%)

Non-Degenerate

Average of the axial and Max/Min Principal Strain (3D) within the whole disc

Axial Strains

Min Principal Strain (3D)

* Significant difference ($p \le 0.05$)

Axial Compression to Failure

Failure Fluoroscope Images

Degenerate

Non-Degenerate

Failure MRIs

Degenerate

Non-Degenerate

Endplate Failure Locations

Prediction of failure location with DVC results

Conclusions

- Developed a method of measuring 3D strains in human discs using MR images (DVC based on MRI)
- DVC has a potential to show mechanical changes in human discs after degeneration
- DVC has the potential to predict fracture locations through analysing strain distributions within discs under physiological loads (1KN)

Future Work

- Using the method in-vivo
- Investigate other parameters that may influence failure location
- Other modes of loading
- Interactions between nucleus replacements and surrounding tissues
- Use strain maps to validate finite element models

Nucleus replacement devices

Nucore[®]

PDN[®]

Regain®

DASCOR®

Thanks to the rest of the team!

- Jeff Clark
- Nicoleta Baxan
- Spyros Masouros
- Brett Freedman
- Nicolas Newell
- Ulrich Hansen

