

School of Engineering Sciences

Thermography for full-field stress and damage analysis of composite components

Janice Dulieu-Barton Simon Quinn, Richard Fruehmann, Duncan Crump, Trystan Emery, Stephen Boyd, Shamala Sambasivam, Ole Thybo Thomsen, Paul Cunningham

Summary

- TSA overview
- Motivation
- Validation of FEA –case studies
- Damage Analysis
- Non crimp and woven materials

Motivation

- Accurate definition of material/structural behaviour large variations in values in literature for nominally identical materials
- Particularly important in composite materials variations depend on manufacturing process etc
- Essential to accurately validate FEA using full-field experimental mechanics techniques
- Tools for damage analysis and NDE

Thermoelastic stress analysis

Wang, W.J., Dulieu-Barton, J.M. and Li, Q. "Assessment of non-adiabatic behaviour in thermoelastic stress analysis of small scale components", Experimental Mechanics, in press. DOI: 10.1007/s11340-009-9249-2. Sambasivam, S., Quinn, S and Dulieu-Barton, J.M., "Identification of the source of the thermoelastic response from orthotropic laminated composites", 17th International Conference on Composite Materials (ICCM17), 2009, Edinburgh, 11 pages on CD.

Coefficient of thermal expansion

Harwood and Cummings 1991

Vacuum infused Fruehmann et al JSA 2008

Daniel and Ishai 1994

Derivation of stresses from TSA-calibration

Emery, T.R., Dulieu-Barton, J.M., Earl, J.S. and Cunningham, P.R., "A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis", Composites Science and Technology, 2008, <u>68</u>, 743-752.

Sandwich structures and core junctions

Type		Face Material	t_f [mm]	width [mm]	Core Material 1	Core Material 2	Core Material 3
	1	Aluminium alloy	1.0	45.6	Aluminium alloy	Rohacell 51WF	Rohacell 200WF
	2	PMMA	1.5	47.2	PMMA	Dynathane 1000	Rohacell 51WF
	3	GFRP-CSM	1.2	46.8	PMMA	Dynathane 1000	Rohacell 51WF
	4	GFRP-NCF	2.8	49.0	Aluminium alloy	Rohacell 51WF	Rohacell 200WF

Sandwich structures and core junctions

Experiment

Calibration of the face sheet material Isotropic CSM material $\Delta T = KT\Delta(\sigma_1 + \sigma_2)$

Orthotropic NCF material $\Delta T = K_1 T \Delta \sigma_1 + K_2 T \Delta \sigma_2$

Material properties and calibration constants

Material			Young's modulus	Poisson's ratio		
Aluminium a	lloy 7075-T6		71700	0.32		
PMMA (Deg	ussa Plexiglas X	3100	0.4	1		
GFRP-CSM	-		13000	0.3	80	
GFRP-NCF,	[0/+45/90/-45 / -	$+45/90/-45/0]_2$	19200	0.2	29	
Rohacell 51V	VF		75 [10] 350 [10]		0.32 [11] 0.38 [11]	
Rohacell 200	WF					
Dynathane 10	000 (PU rubber f	5.5		0.22		
			F		*	
Material	Mean stress [MPa]	Stress range [MPa] 10.0, 20.0 3.2, 6.4	Frequency [Hz]	A, A [MPa/DL] 6.06 (5.3%) 1.31 (6.1%)		$\begin{array}{c} A_{M}, \ A_{M} \\ [MPa/DL] \\ 6.45 \ (2.5\%) \\ 1.33 \ (3.8\%) \end{array}$
Aluminium alloy	20.0, 40.0		10, 30, 50			
PMMA	5.4, 10.8		6,10			
GFRP-NCF	10.0, 20.0	5.0, 10.0	6,10	5.63 (1	11.2%)	5.35 (9.9%)

5.0, 10.0

6,10

3.74 (3.7%)

GFRP-CSM

10.0, 20.0

3.87 (6.7%)

Results from CSM face sheet

Results from NCF face sheet

Johannes, M. Dulieu-Barton, J.M., Bozhevolnaya, Thomsen, E., O.T., "Characterisation of local effects at core junctions in sandwich structures using thermoelastic stress analysis" Journal of Strain for Engineering Design, 2008, <u>43</u>, 469-492.

Stresses in secondary aircraft structure

- Increased use of composite materials in aircraft structure
 - weight saving
 - improved life time
- Development of new manufacturing techniques and new materials

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., "The manufacturing procedure for aerospace secondary sandwich structure panels" Journal of Sandwich Structures and Materials, in press. DOI :10.1177/1099636209104531

Generic panel

Face sheet material characterisation

UD prepreg/autoclaved

NCF RFI Oven cure

Thermoelastic constants

Representative loading

- Allow full scale pressure load applied to generic panel
- Panel is pulled over water filled cushion
- Applied to standard test machine
 Allows cyclic loading
 Allows optical access

Full scale testing of a generic panel

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., "Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of aircraft secondary structure", Measurement Science and Technology, 19 2010, <u>21</u>, (16pp). DOI: 1088/0957-0233/21/1/015108

Results

- Standard autoclaved prepreg offered a panel with a maximum deflection of 6.3 mm whilst RFI, NCF panel deformed by 4.6 mm.
- The measured stress response indicated a reduction in stress peak when using RFI and NCF.

Comparison of TSA and FEA

Experimental Result:

21

Autoclaved

NCF -RFI

Damage studies in Cross ply laminate

[(0/90)₃, 0, (90/0)₃]

Cross ply

School of Engineering Sciences

Damage indicator

Emery, T. R. and Dulieu-Barton, J.M., "Thermoelastic Stress Analysis of damage mechanisms in composite materials", Composites Part A, in press. DOI: 10.1016/j.compositesa.2009.08.015

Thermography data-damage analysis

$$\Delta T = \underbrace{T}_{pC_p} (\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2) \longrightarrow \frac{\Delta T}{T}$$

Application of TSA to woven composites

- It is possible to correlate the thermoelastic response to the weave pattern.
- The thermoelastic response changed with repeated testing at loads below 30 % of the failure stress

∆T data from a single ply of plain weave E-glass/epoxy

 ΔT data from a single ply of 2 x 2 twill weave E-glass/epoxy

Frühmann, R.K., Dulieu-Barton, J.M. and Quinn, S., "On the thermoelastic response of woven composite materials", Journal of Strain Analysis for Engineering Design, 2008, <u>43</u>, 435-450.

Global thermoelastic response

• The effect of stacking sequence is visible in the global TSA data.

TSA data from all four undamaged materials, at 10% loading

Meso-scale thermoelastic response

- Thermoelastic signal decay is concentrated in the weft cells.
- Cracks are found to form along the centre of the weft cells.

Time history of the thermoelastic response from a typical warp and weft yarn

Macroscope image (x 10 magnification) of the WRE581T single ply material after 184000 cycles at 15%

Data processing

Damage identification

- The thermoelasic response was examined at the scale of the yarn.
- 'Virgin' data was subtracted to identify changes in the local thermoelastic response

Subtracted $\triangle T/T$ field from a single weft yarn

School of Engineering Sciences

Overview

- Damage in textile composites can occur at very low stress levels, < 20 % of $\sigma_{\rm f}$.
- Damage can be identified using TSA despite the heterogeneous thermoelastic material response.
- Phase data provides a means for damage identification without *a priori* knowledge of the thermoelastic field.

Complete set of high resolution TSA data from the WRE581T specimen loaded at 10 % of the failure stress

This work was supported by the UK Engineering and Physical Sciences Research Council -EPSRC

Frühmann, R.K., Dulieu-Barton, J.M. and Quinn, S., "Assessment of fatigue damage evolution in woven composite materials using infra-red techniques" Composites Science and Technology, in press. DOI: /10.1016/j.compscitech.2010.02.009

Field studies – transient loading

Frühmann, R.K., Dulieu-Barton, J.M. and Quinn, S., "Thermoelastic stress and damage analysis using transient loading" Experimental Mechanics, in press. DOI: 10.1007/s11340-009-9295-9

Conclusions

- Demonstrated the necessity of accurate measured material property values for composite materials
- Shown how full-field experimental mechanics techniques can be used to validate FEA
- Presented convincing case studies that demonstrate the applicability and ease of using TSA
- Shown that TSA can be used over a range of scales for stress analysis and damage studies