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Summary

e TSA overview

e Motivation

e Validation of FEA —case studies
« Damage Analysis

e Non crimp and woven materials
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Motivation

e Accurate definition of material/structural behaviour — large

variations in values in literature for nominally identical
materials

e Particularly important in composite materials — variations
depend on manufacturing process etc

e Essential to accurately validate FEA using full-field
experimental mechanics techniques

e Tools for damage analysis and NDE
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Thermoelastic stress analysis
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Wang, W.J., Dulieu-Barton, J.M. and Li, Q. “Assessment of non-adiabatic
behaviour in thermoelastic stress analysis of small scale components”,
Experimental Mechanics, in press. DOI: 10.1007/s11340-009-9249-2.
Sambasivam, S., Quinn, S and Dulieu-Barton, J.M., “ldentification of the
source of the thermoelastic response from orthotropic laminated
composites”, 17th International Conference on Composite Materials
(ICCM17), 2009, Edinburgh, 11 pages on CD.
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Coefficient of thermal expansion
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Derivation of stresses from TSA-calibration

AT =K, TAc, +K,TAc,

Klz(xl/pCp Kzzazlpcp
AT K
ﬁ = Ao, +ﬁAG 2 ‘ Stresses
TSA FEA

Emery, T.R., Dulieu-Barton, J.M., Earl, J.S. and Cunningham, P.R., “A generalised
approach to the calibration of orthotropic materials for thermoelastic stress analysis”,
Composites Science and Technology, 2008, 68, 743-752.
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Sandwich structures and core junctions
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Type Face Material t,f[mm] width[mm] Core Material 1 ~ Core Material 2  Core Material 3
1 Aluminiumalloy 1.0 45.6 Aluminium alloy  Rohacell 51WF Rohacell 200WF
2 PMMA 1.5 47.2 PMMA Dynathane 1000  Rohacell 51WF
3 GFRP-CSM 1.2 46.8 PMMA Dynathane 1000  Rohacell 51WF
4 GFRP-NCF 2.8 49.0 Aluminium alloy Rohacell 51WF Rohacell 200WF
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Sandwich structures and core junctions
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Calibration of the face sheet material
Isotropic CSM material AT = KTA(o,+0o,)

Orthotropic NCF material ATzKlTAalJrK%z
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Material properties and calibration constants

Material Young’s modulus [MPa] Poisson’s ratio
Aluminium alloy 7075-T6 71700 0.32
PMMA (Degussa Plexiglas XT) 3100 0.41
GFRP-CSM 13000 0.30
GFRP-NCF, [0/+45/90/-45 | +45/90/-45/0], 19200 0.29
Rohacell 51WF 75 [10] 0.32[11]
Rohacell 200WF 350 [10] 0.38 [11]
Dynathane 1000 (PU rubber foam) 55 0.22
Material Mean stress Stress range Frequency A A Ay A,
[MPa] [MPa] [Hz] [MPa/DL] [MPa/DL]
Aluminium alloy 20.0, 40.0 10.0, 20.0 10, 30, 50 6.06 ( 5.3%) 6.45 (2.5%)
PMMA 5.4,10.8 3.2,64 6, 10 1.31 ( 6.1%) 1.33 (3.8%)
GFRP-NCF 10.0, 20.0 5.0, 10.0 6, 10 5.63 (11.2%) 5.35 (9.9%)
GFRP-CSM 10.0, 20.0 5.0, 10.0 6, 10 3.74 ( 3.7%) 3.87 (6.7%)
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Results from CSM face sheet
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Results from NCF face sheet
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Stresses In secondary aircraft structure

e Increased use of composite
materials in aircraft
structure

Secondary Structure
'Panels

— weight saving

— Improved life time

e Development of new
manufacturing techniques
and new materials

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., “The manufacturing procedure for
aerospace secondary sandwich structure panels” Journal of Sandwich Structures and
Materials, in press. DOI :10.1177/1099636209104531
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Face sheet material characterisation
UD prepreg/autoclaved NCF RFI Oven cure
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Thermoelastic constants

Thermoelastic
constant
MPa™(x 10°)

1.592 + 0.83

3.112 +1.19

1.58 £ 0.81
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2.837 £1.55

0.1200
0.1080
0.0980
00540
0.0720
0.0600
0.0480
0.0380
00240
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0.0000
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Representative loading

Allow full scale pressure load applied to generic panel
Panel is pulled over water filled cushion

Applied to standard  \aterfiedfiexible cushion G?eric%”e'

test machine

Allows cyclic loading

Allows optical access

Moving/loading
structure

Fxedsupport

structure Unloaded
Loaded
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Full scale testing of a generic panel

Generic Panel

Test machine

—

Fixed support
| Structure

Moving/loading structure

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., “Design and commission of an
experimental test rig to apply a full-scale pressure load on composite sandwich panels
representative of aircraft secondary structure”, Measurement Science and Technology, 19
2010, 21, (16pp). DOI: 1088/0957-0233/21/1/015108
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» MPa
ReSUItS Autoclaved RFI, NCF

e Standard autoclaved
prepreg offered a panel
with a maximum deflection
of 6.3 mm whilst RFI, NCF
panel deformed by 4.6 mm.

d F 140

e The measured stress
response indicated a
reduction in stress peak
when using RFI and NCF.




Comparison of TSA and FEA

Experimental Result:
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NCF -RFI
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Damage studies in Cross ply laminate
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Damage indicator
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Emery, T. R. and Dulieu-Barton, J.M., “Thermoelastic Stress Analysis of damage
mechanisms in composite materials”, Composites Part A, in press. DOI:

10.1016/j.compositesa.2009.08.015
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Thermography data-damage analysis
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Application of TSA to woven composites

It is possible to correlate the thermoelastic response to the weave
pattern.

The thermoelastic response changed with repeated testing at loads
below 30 % of the failure stress

AT data from a single ply

AT data from a single ply
of 2 x 2 twill weave E-glass/epoxy

of plain weave E-glass/epoxy

Frihmann, R.K., Dulieu-Barton, J.M. and Quinn, S., “On the thermoelastic response of
woven composite materials”, Journal of Strain Analysis for Engineering Design, 2008, 43, 28

435-450.
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Global thermoelastic response

e The effect of stacking sequence is visible in the global TSA
data.

RE400T (1 ply), 10%  RE400T (2 ply), 10%  WRESS1T (1 ply), 10%  WRESBIT (2 ply), 10% i
g
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TSA data from all four undamaged
materials, at 10% loading
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Meso-scale thermoelastic response

e Thermoelastic signal decay is

concentrated in the weft cells.

e Cracks are found to form along

the centre of the weft cells.

Time history of the
thermoelastic response from
a typical warp and weft yarn

Macroscope image
(x 10 magnification) of the WRE581T single
ply material after 184000 cycles at 15%

AT/T x 16°
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Data processing
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Damage identification

e The thermoelasic response was examined at the scale of the yarn.

e ‘Virgin’ data was subtracted to identify changes in the local
thermoelastic response

Subtracted AT/T Subtracted AT/T
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from a single weft yarn
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Overview

Damage in textile composites
can occur at very low stress
levels, <20 % of o ..

Damage can be identified using
TSA despite the heterogeneous

thermoelastic material response.

Phase data provides a means for
damage identification without a
priori knowledge of the
thermoelastic field.

Delta T (K}
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Termperature (K)
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Complete set of high resolution TSA data from the
WRE581T specimen loaded at 10 % of the failure stress

This work was supported by the UK Engineering and Physical Sciences Research Council -EPSRC

Frihmann, R.K., Dulieu-Barton, J.M. and Quinn, S., “Assessment of fatigue damage
evolution in woven composite materials using infra-red techniques” Composites
Science and Technology, in press. DOI: /10.1016/j.compscitech.2010.02.009
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Field studies — transient loading
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Conclusions

« Demonstrated the necessity of accurate measured material
property values for composite materials

e Shown how full-field experimental mechanics techniques
can be used to validate FEA

e Presented convincing case studies that demonstrate the
applicability and ease of using TSA

e Shown that TSA can be used over a range of scales for stress
analysis and damage studies
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