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Summary
• TSA overview

• Motivation

• Validation of FEA –case studies

• Damage Analysis

• Non crimp and woven materials
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Motivation
• Accurate definition of material/structural behaviour – large 

variations in values in literature for nominally identical 
materials

• Particularly important in composite materials – variations 
depend on manufacturing process etc

• Essential to accurately validate FEA using full-field 
experimental mechanics techniques

• Tools for damage analysis and NDE
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Thermoelastic stress analysis
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Coefficient of thermal expansion
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Derivation of stresses from TSA-calibration
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Emery, T.R., Dulieu-Barton, J.M., Earl, J.S. and Cunningham, P.R., “A generalised  
approach to the calibration of orthotropic materials for thermoelastic stress analysis”, 
Composites Science and Technology, 2008, 68, 743-752.
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Sandwich structures and core junctions
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Type  Face Material tf [mm] width [mm]  Core Material 1  Core Material 2 Core Material 3 
1  Aluminium alloy 1.0 45.6  Aluminium alloy  Rohacell 51WF Rohacell 200WF 
2  PMMA 1.5 47.2  PMMA  Dynathane 1000 Rohacell 51WF 
3  GFRP-CSM  1.2 46.8  PMMA  Dynathane 1000 Rohacell 51WF 
4  GFRP-NCF 2.8 49.0  Aluminium alloy  Rohacell 51WF Rohacell 200WF 
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Sandwich structures and core junctions

8
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Experiment
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Calibration of the face sheet material
)(KTT 21 σσΔΔ +=Isotropic CSM material

Orthotropic NCF material 2211 σΔσΔΔ TKTKT +=
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Material properties and calibration constants
  Material Young’s modulus [MPa] Poisson’s ratio 
  Aluminium alloy 7075-T6 71700 0.32 
  PMMA (Degussa Plexiglas XT)   3100 0.41 
  GFRP-CSM 13000 0.30 
  GFRP-NCF, [0/+45/90/-45 / +45/90/-45/0]2 19200 0.29 
  Rohacell 51WF               75  [10] 0.32 [11] 
  Rohacell 200WF             350  [10] 0.38 [11] 
  Dynathane 1000 (PU rubber foam)           5.5 0.22         

 Material Mean stress 
 [MPa] 

Stress range 
 [MPa] 

Frequency 
 [Hz] 

A, A* 
[MPa/DL] 

AM, **
MA  

[MPa/DL] 
 Aluminium alloy 20.0, 40.0 10.0, 20.0 10, 30, 50 6.06 (  5.3%) 6.45 (2.5%) 
 PMMA 5.4, 10.8 3.2, 6.4 6, 10 1.31 (  6.1%) 1.33 (3.8%) 
 GFRP-NCF 10.0, 20.0 5.0, 10.0 6, 10 5.63 (11.2%) 5.35 (9.9%) 
 GFRP-CSM 10.0, 20.0 5.0, 10.0 6, 10 3.74 (  3.7%) 3.87 (6.7%) 
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Results from CSM face sheet
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Results from NCF face sheet
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Johannes, M.  Dulieu-Barton, J.M. , 
Bozhevolnaya, E., Thomsen, O.T., 
“Characterisation of local effects at core 
junctions in sandwich structures using 
thermoelastic stress analysis” Journal of Strain 
for Engineering Design, 2008, 43, 469-492.
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Stresses in secondary aircraft structure
• Increased use of composite 

materials in aircraft 
structure

– weight saving

– improved life time

• Development of new 
manufacturing techniques 
and new materials

14

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., “The manufacturing procedure for  
aerospace secondary sandwich structure panels” Journal of Sandwich Structures and 
Materials, in press. DOI :10.1177/1099636209104531
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Generic panel

15
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Face sheet material characterisation
UD prepreg/autoclaved NCF RFI Oven cure
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Thermoelastic constants

 M1, KL M1, KT M2, KL M2, KT  
 

    
Thermoelastic 

constant  
MPa-1(x 10-6) 

 
1.592 ± 0.83 

 
3.112 ± 1.19 

 
1.58 ± 0.81 

 
2.837 ± 1.55 
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Representative loading
• Allow full scale pressure load applied to generic panel

• Panel is pulled over water filled cushion

• Applied to standard

test machine

• Allows cyclic loading

• Allows optical access
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Full scale testing of a generic panel

19

Crump, D.A., Dulieu-Barton, J.M. and Savage, J., “Design and commission of an 
experimental test rig to apply a full-scale pressure load on composite sandwich panels 
representative of aircraft secondary structure”, Measurement Science and Technology, 
2010, 21, (16pp). DOI: 1088/0957-0233/21/1/015108
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Results
• Standard autoclaved 

prepreg offered a panel 
with a maximum deflection 
of 6.3 mm whilst RFI, NCF 
panel deformed by 4.6 mm.

• The measured stress 
response indicated a 
reduction in stress peak 
when using RFI and NCF.

Autoclaved RFI, NCF
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Comparison of TSA and FEA
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Autoclaved
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NCF -RFI
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Damage studies in Cross ply laminate 

[(0/90)3 , 0, (90/0)3 ]
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Cross ply 
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Damage indicator

Emery, T. R. and Dulieu-Barton, J.M., “Thermoelastic Stress Analysis of damage 
mechanisms in composite materials”, Composites Part A, in press. DOI: 
10.1016/j.compositesa.2009.08.015
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Thermography data-damage analysis
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Application of TSA to woven composites

28

ΔT

 

data from a single ply
of plain weave E-glass/epoxy

ΔT

 

data from a single ply
of 2 x 2 twill weave E-glass/epoxy

• It is possible to correlate the thermoelastic response to the weave 
pattern.

• The thermoelastic response changed with repeated testing at loads 
below 30 % of the failure stress

Frühmann, R.K., Dulieu-Barton, J.M. and Quinn, S., “On the thermoelastic response of 
woven composite materials”, Journal of Strain Analysis for Engineering Design, 2008, 43, 
435-450. 
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Global thermoelastic response

29

TSA data from all four undamaged 
materials, at 10% loading

• The effect of stacking sequence is visible in the global TSA 
data.



30

Meso-scale thermoelastic response
• Thermoelastic signal decay is 

concentrated in the weft cells.

• Cracks are found to form along 
the centre of the weft cells.

30

Time history of the 
thermoelastic

 

response from 
a typical warp and weft yarn

Macroscope

 

image
(x 10 magnification) of the WRE581T single
ply material after 184000 cycles at 15% 
loading
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Data processing
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Damage identification
• The thermoelasic response was examined at the scale of the yarn.

• ‘Virgin’ data was subtracted to identify changes in the local 
thermoelastic response

32

Subtracted ∆T/T

 

field 
from a single weft yarn
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Overview
• Damage in textile composites 

can occur at very low stress 
levels, < 20 % of σf .

• Damage can be identified using 
TSA despite the heterogeneous 
thermoelastic material response.

• Phase data provides a means for 
damage identification without a 
priori knowledge of the 
thermoelastic field.

33

Complete set of high resolution TSA data from the 
WRE581T specimen loaded at 10 % of the failure stress

This work was supported by the UK Engineering and Physical Sciences Research Council -EPSRC

Frühmann, R.K., Dulieu-Barton, J.M. and Quinn, S., “Assessment of fatigue damage 
evolution in woven composite materials using infra-red techniques” Composites 
Science and Technology, in press. DOI: /10.1016/j.compscitech.2010.02.009
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Field studies – transient loading

Frühmann, R.K., Dulieu-Barton, J.M. and 
Quinn, S., “Thermoelastic stress and damage 
analysis using transient loading” Experimental 
Mechanics, in press. DOI: 10.1007/s11340- 
009-9295-9
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Conclusions
• Demonstrated the necessity of accurate measured material 

property values for composite materials

• Shown how full-field experimental mechanics techniques 
can be used to validate FEA

• Presented convincing case studies that demonstrate the 
applicability and ease of using TSA

• Shown that TSA can be used over a range of scales for stress 
analysis and damage studies
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