Elastic Constants

Their Significance in Residual Stress Measurement and Their Experimental Determination

Joe Kelleher

NPL, Teddington

27 September 2023

Science and Technology Facilities Council

ISIS Neutron and Muon Source

The need for elastic constants

• X-ray stress measurement generally goes...

Technology

ISIS Neutron and

Muon Source

Facilities Council

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

O'

lîm

- Elastic constants allow stress to be found from strain or length measurements
- Function of material being measured
- Unlike $d_0 \dots$
 - Cannot be handled implicitly
 - But generally little variation within and between samples

Plane-specific and bulk constants

- X-ray elastic constants can differ considerably from the material's bulk elastic properties
 - Specific to *hkl* plane being measured
 - Diffraction only measures grains with this hkl plane suitably oriented
 - Why are the X-ray constants not the same as the ordinary bulk constants?
 - Crystal anisotropy: Individual crystallites have different stiffnesses in different hkl directions
 - **Microstructure**: The grains that surround a measured grain will affect the stress state there
 - For multi-peak (Rietveld) measurements, bulk elastic properties good enough
 - Individual *hkl* planes may be more or less stiff than the bulk material
 - Average of many hkl planes usually close to bulk material

ISIS Neutron and

Muon Source

🕀 www.isis.stfc.ac.uk

🖌 Ӧ @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

How elastic constants are specified

- Properties of linear isotropic elastic solid defined by two scalar numbers
 - Normally use Young's modulus E and Poisson's ratio υ
 - Sometimes bulk modulus K, shear modulus G, Lame parameter $\boldsymbol{\lambda}$

$$K = \frac{E}{3(1-2\nu)}$$
 $G = \frac{E}{2(1+\nu)}$ $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$

• For X-ray diffraction, can use S_1 and $\frac{1}{2}S_2$:

$$S_1 = \frac{-\upsilon}{E} \qquad \qquad \frac{1}{2}S_2 = \frac{(1+\upsilon)}{E}$$

• S₁ should be negative, but positive value sometimes quoted

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

Ж

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

How elastic constants are specified

- Two constants are needed to specify linear elastic behaviour in isotropic material
- Several possible choices, including:

Quantities	Symbol	Advantages	Areas of use
Young's modulus Poisson's ratio	E v	Simple description of uniaxial deformation	Mechanical design, materials testing
Bulk modulus Shear modulus	K G	Separates change in volume from change in shape	Geology, solid state physics
Lame constants	λ μ (=G)	Convenient stress-strain relation formulas in 3D	Mathematics of elasticity
S_1 and $\frac{1}{2}S_2$	S ₁ ½S ₂	Convenient formulas for diffraction-based measurements	X-ray stress measurement

ISIS Neutron and

Muon Source

Ж

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Elastic properties of the elements

ISIS Neutron and Muon Source

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Stress-strain in BCC steel

Four peaks measured during uniaxial loading

• From MR Daymond and HG Priesmeyer, Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling, Acta Mater. 50(6), p1613-1626 (2002)

ISIS Neutron and Muon Source

Science and Technology

Single crystals are anisotropic

Science and Technology Facilities Council

ISIS Neutron and Muon Source

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Single crystal elastic constants

• Single crystal elastic constants of selected fcc metals.

E{hkl} MPa	Al	Cu	Ni	Y-Fe
E{111}	76.1	191.1	260.9	300.0
E{200}	63.7	66.7	120.5	93.5
E{220}	72.6	130.3	202.0	193.2
E{311}	69.0	96.2	161.4	138.3
E{420}	69.1	97.0	162.4	139.6
E{331}	73.6	143.6	216.2	215.5
$(2(S_{11}-S_{12}))/S_{44}$	1.22	3.20	2.37	3.80

• Single crystal elastic constants of selected bcc metals.

E{hkl} MPa	Stainless steel	V	Мо	Cr
E{110}	210.5	141.3	305.3	268.5
E{200}	125.0	80.5	357.1	333.3
E{211}	210.5	141.3	305.3	268.5
E{220}	210.5	141.3	305.3	268.5
E{310}	146.4	102.3	336.6	306.7
E{222}	272.7	176.5	291.3	252.1
$(2(S_{11}-S_{12}))/S_{44}$	2.51	2.13	0.79	0.71

ISIS Neutron and

Muon Source

💥 (O) @isisneutronmuon

www.isis.stfc.ac.uk

₩

Origin of plane-specificity

- 'Uniform' stress is unevenly distributed among grains
 - Grain stiffness is function of *hkl* direction
 - More load carried by grains that are stiff in the loading direction
 - *hkl* spacing normal to loading direction is thus affected

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

Ж

(O) @isisneutronmuon

伽 uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sources of elastic constants

Theoretical models

- Mathematical relation to single crystal constants
- Finite element simulation of microstructure

Published data

- Compiled tables for common *hkl* planes and alloys
- Intergranular stress studies

Measure your own

- For unusual materials, textured materials, thin films
- Synchrotron or neutron transmission
- Laboratory sin²psi on tensile or bending rig

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

(O) @isisneutronmuon

ງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sources of elastic constants: Theoretical models

- Single crystal constants often already known
- Polycrystal straining models give plane specific constants
 - Voigt model: all grains have same strain
 - Reuss model: all grains have same stress
 - Hill model: average of Voigt and Reuss behaviour
 - Voigt and Reuss are upper and lower bounds
 - Average of these easy way to get plane-specific data
 - Kröner model: grain behaves like single crystal surrounded by isotropic material
 - Calculated using finite element model

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

() @isisneutronmuon

n uk.linkedin.com/showcase/isis-neutron-and-muon-source

Effective elastic constants from the Kröner model

• Effective elastic constants of selected polycrystalline FCC metals obtained using the Kröner model.

E{hkl} MPa	AI	Cu	Ni	Y-Fe
E{111}	73.4	159.0	224.6	247.9
E{200}	67.6	101.1	160.0	149.1
E{220}	71.9	139.1	203.9	212.7
E{311}	70.2	122.0	185.0	183.5
E{420}	70.3	122.5	185.6	184.4
E{331}	72.3	144.3	209.5	221.8

v{hkl} MPa	Al	Cu	Ni	Y-Fe
v{111}	0.34	0.31	0.30	0.24
v{200}	0.35	0.38	0.36	0.34
v{220}	0.34	0.33	0.33	0.28
v{311}	0.35	0.35	0.33	0.31
v{420}	0.35	0.35	0.33	0.31
v{331}	0.34	0.32	0.31	0.27

www.isis.stfc.ac.uk

ISIS Neutron and Muon Source

💥 (O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

13

Sources of elastic constants: Published data

- Textbooks on diffraction
 - e.g. Cullity's Elements of X-ray Diffraction
 - Table 16-1, p460-461: Ferritic, austenitic, nickel, aluminium, copper alloys, for preferred hkl planes
- Published in-situ loading experiments
 - Normally for intergranular stress / plasticity studies
 - For references, look at D Dye, HJ Stone & RC Reed, Intergranular and Interphase Microstress, Current opinion in solid state & materials science 5 (1): 31-37 (2001)
 - Digitise data and do linear fit on the elastic region
 - Engauge digitiser (free) & any spreadsheet
 - These are also useful for choosing an hkl plane

ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

() @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sources of elastic constants: Experimental measurement

- Sample is measured during incremental loading
 - Relation between individual *hkl* peak and applied bulk stress
 - Linear until plasticity onset
 - Measure in loading direction and perpendicular to it
- Choice of loading rig
 - Laboratory X-ray: 4-point bend
 - Synchrotron X-ray or neutron: Uniaxial tensile test

Stresstech 4-point bend system, see <u>www.stresstech.fi</u> for details

ISIS Neutron and Muon Source 🚯 www.isis.stfc.ac.uk

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

In-situ loading for synchrotron measurements

Experimental measurement of elastic constants

- Titanium aluminide (TiAl) with duplex microstructure
 - Synchrotron in-situ loading measured with area detector
 - Nonlinearity due to grain size issues

