

The British Society for Strain Measurement

Warwick University, July 9th 2019

Image-based inertial high strain rate tests

Dr Lloyd FLETCHER, Prof. Fabrice PIERRON

Faculty of Engineering and Physical Sciences University of Southampton, UK

www.photodyn.org

Introduction – 1/3

High strain rate material behaviour

- Very important for many engineering applications

- Highly strain rate dependent

Need for specific test methods

Introduction – 2/3

Kolsky bar (or SHPB)

Introduction – 3/3

Inertia limited!

$$(F_a + F_b) = \rho \int_V a_1 dV$$

- 90° UD tensile testing
 - Low strains to failure
 - Low wave speeds
- Literature data
 - Limited strain rates (a few 100s s⁻¹)
 - Poor quality data

Gilat, A., Goldberg, R. K., & Roberts, G. D. (2002). Composites Science and Technology

L. Fletcher, F. Pierron - BSSM High strain rate testing of materials workshop, Warwick, July 2019

X₂↑

Stress from acceleration: the IBII test

- Inertial impact test
- Equilibrium of blue sub-system

Full-field strain measured

$$\overline{\sigma_{11}}^{x_2}(x_1^0,t) = \rho x_1^0 \overline{a_1}(x_1^0,t)$$

- Stress-strain curves can be obtained

Image-Based Inertial Impact (IBII) test

IBII tests on UD composites

- SolvaLite[™] 730 Prepreg Carbon Fiber Reinforced Thermoset [90]₁₀ 2.5 mm thick
- Grid method, 0.68 mm pitch, 5px/period (alt. to DIC)
- Grid printed directly on specimens, white ink

www.matchid.eu

1.00				

Fletcher L., Van Blitterswyk J., Pierron F., J. of Dyn. Behav. of Mat., 5(1):65-92, 2019

Experimental configuration

L. Fletcher, F. Pierron - BSSM High strain rate testing of materials workshop, Warwick, July 2019

Experimental set-up

Shimadzu HPV-X (400 x 250 pixels) Flash light

specimen

Real time

Raw images

- Wave speed: ~2 km.s⁻¹
- 2 Mfps, total video time: 64 μs

Kinematic data

Stress-strain curve

Small Poisson's effect because of 90° configuration $\sigma_v \approx$

L. Fletcher, F. Pierron - BSSM High strain rate testing of materials workshop, Warwick, July 2019

Modulus - 1/2

Modulus -2/2

Fracture analysis - 1/4

The 'stress gauge'

$$\overline{\sigma_{11}}^{x_2}(x_1^0,t) = \rho x_1^0 \overline{a_1}(x_1^0,t)$$

$$\sigma_{11}^{\text{LSG}}(\mathbf{x}_1^0, \mathbf{x}_2, \mathbf{t}) = \rho \mathbf{x}_1^0 \overline{\mathbf{a}_1}(\mathbf{x}_1^0, \mathbf{t}) + \frac{12\rho \mathbf{x}_1^0 \mathbf{x}_2}{\mathbf{w}^2} \left(\overline{\mathbf{a}_1 \mathbf{x}_2} - \overline{\mathbf{a}_2 \mathbf{x}_1} + \mathbf{x}_1^0 \overline{\mathbf{a}_2}\right)$$

– Linear in x_2

Fracture analysis - 2/4

Fracture analysis - 3/4

Fracture criterion

Fracture analysis - 4/4

Strength identification

Dynamic tensile strength

- **Off-axis IBII test**
- Shear properties?

Pierron, F., & Fletcher, L. (2019). Generalized stress-strain curves for IBII tests on isotropic and orthotropic materials. Journal of Dynamic Behaviour of Materials. Vol. 5, Issue 2, pp. 180-193

45° off-axis test

PhD Mr Sam Parry

45° off-axis test

PhD Mr Sam Parry

Strain rates: ~1000 - 2000 s⁻¹

23/31

PhD of Mr Jared Van Blitterswyk

Van Blitterswyk J., Fletcher L., Pierron F., J. of Dyn. Behav. of Mat., 4(4):543-572, 2018 L. Fletcher, F. Pierron - BSSM High strain rate testing of materials workshop, Warwick, July 2019

Interlaminar tension

Interlaminar properties - 1/2

Interlaminar properties - 2/2

Interlaminar shear

PhD of Mr Jared Van Blitterswyk

Van Blitterswyk J., Fletcher L., Pierron F., in preparation, 2019

IBII test on tungsten carbide cermet

Fletcher L., Pierron F., J. Dyn. Behav. Mat., 4(4):481-504, 2018.

IBII test on adhesives - 1/2

IBII test on adhesives - 2/2

Outside adhesive

The IBUS test

Image-Based Ultrasonic Shaking

Specimen bonded onto sonotrode (superglue)

First long. mode, 20 kHz (up to ± 60 mm)

Seghir, R., & Pierron, F. (2018). A novel image-based ultrasonic test to map material mechanical properties at high strain-rates. *Experimental Mechanics, 58(2), 183-206*.

The IBUS test PMMA, 90° and off-axis composites

Dr Xavier Régal

Shimadzu HPV-X: 2 Mfps (400 x 250 pixels), 128 images

L. Fletcher, F. Pierron - BSSM High strain rate testing of materials workshop, Warwick, July 2019

displacement

time: 0.00 µ s

Outlook

- Vast design space, new opportunities
 - Successor to Hopkinson bar
- Cameras: 7 performance and 1 in price

Dr Alex Marek

Under microscope

Sponsors - Acknowledgements

- EPSRC Established Career Fellowship (2014 2019)
- US AFOSR / EOARD
 Grants FA9550-15-1-0293 and FA9550-17-1-0133
- Royal Society Wolfson Research Merit Award (2012-2017)
- Solvay for supplying test specimens

www.photodyn.org