MICROEXTENSOMETRY MEASUREMENTS AND IDENTIFICATION OF MECHANICAL PROPERTIES ON CORTICAL BONE

<u>G. PUEL</u>*, L. HENRY^(*), A. DEVULDER*, D. AUBRY*, T. HOC*, L. SEDEL** *MSSMAT (ECOLE CENTRALE PARIS/CNRS UMR8579) **B2OA (UNIVERSITÉ PARIS 7/CNRS UMR7052)

CONTEXT

- Current health issue: Osteoporosis
- Factors to be taken into account at the microstructure scale

Digital Image Correlation (DIC)

OUTLINE

- Part I: Experiments on cortical tissue:
 - description of the microstructure
 - DIC: principles and features
- Part II: Strain measurements
- Part III: Identification of mechanical properties

Formation: Primary bone

Transverse cut

`, **Damage** initiating remodelling

Formation: Primary bone

Transverse cut

Formation: Primary bone + resorption cavities

Formation: Primary bone + progressive apposition

Transverse cut Osteoblasts Osteoclasts Longitudinal direction

Formation: Primary bone + progressive apposition

Transverse cut Osteoblasts Osteoclasts Longitudinal direction

Formation: Primary bone + entire osteons

Formation: Primary bone + entire osteons + partially remodelled osteons

Transverse cut

STUDIED BONE SAMPLES

- Samples from 8 human subjects [Devulder 2009]
 - elderly women from 74 to 101 years old
 - dimensions of roughly 5mm x 3mm x 3mm

SEM images

L and T samples 86 years old

IN SITU MICROTENSILE TESTS

CIERS

140

COMPRESSION CURVES

Compression curves along L and T axes

Transverse

Longitudinal

• DIC-corrected macroscopic strains

DIGITAL IMAGE CORRELATION (DIC)

Initial state

Current state

Measurement point associated with a correlation domain D (60 x 60 pixels)

Minimization of a correlation factor

Correlmanuv

Determining the location of the measurement point in the current state

→ Displacements, then macro/micro strains

OUTLINE

- Part I: Experiments on cortical tissue
- Part II: Strain measurements [Devulder 2009]
 - mean microscopic strain
 - crack step threshold strain
- Part III: Identification of mechanical properties

MEAN MICROSCOPIC STRAIN

- Local uniaxial microscopic strains $\rightarrow \varepsilon_l^i$
 - computed on each correlation domain D
- Mean uniaxial microscopic strain $\rightarrow \varepsilon_l$ $\varepsilon_l = \frac{1}{N} \sum_{i=1}^N \varepsilon_l^i$
- Macroscopic uniaxial strain $\rightarrow \varepsilon_{11}$
 - computed based on the displacements of the 4 corners of the observation area

MEAN MICROSCOPIC STRAIN

• Good agreement with the macroscopic strain along the L axis

osteons = L axis-oriented cylinders

MEAN MICROSCOPIC STRAIN

• Weaker agreement with macroscopic strain along the T axis

- porosity associated[®] with Haversian canals
- microstructure heterogeneity

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Determining the standard deviation $\Delta \varepsilon_l$ of the local microscopic strains
- $\Delta \varepsilon_l$ vs macroscopic strain ε_{11} curve

- Definition of a threshold strain $\rightarrow \varepsilon_s$ $\varepsilon_s = \varepsilon_l + 2\Delta\varepsilon_l$
 - 95% of the local strain values in $[\varepsilon_l 2\Delta \varepsilon_l; \varepsilon_s]$ (Gaussian distribution)
- Crack step threshold strain $\rightarrow \varepsilon_{sf}$ $\varepsilon_{sf} = \varepsilon_f + 2\Delta\varepsilon_f$
 - estimation of the strength in terms of strain
 - relevant quantity for a remodelling model

• Summary of the studied samples

• Stronger correlation with the patients' age

OUTLINE

- Part I: Experiments on cortical tissue
- Part II: Strain measurements
- Part III: Identification of mechanical properties
 - Young's modulus and Poisson's ratio on bovine cortical bone [Henry 2006]
 - Young's modulus and Poisson's ratio on human cortical bone [Devulder 2009]

SPECIMEN GEOMETRY

- Studied bone sample
 - bovine cortical bone
 - cavities and primary bone are removed

SPECIMEN GEOMETRY

- Studied bone sample
 - bovine cortical bone
 - cavities and primary bone are removed

SPECIMEN GEOMETRY

- Studied bone sample
 - bovine cortical bone
 - cavities and primary bone are removed

- grey level proportional to mineral content
- Existence of a correlation
 between the local Young's modulus and mineral content
 ²⁶ ²⁴ E_L (GPa)
 - ~70%
 - nanoindentation¹⁸
 tests
 14

FE MESH PROPERTIES

- Finding local elastic properties Local grey level GL E = a GL + b (experimental correlation) v = c GL + d (assumption)
- GL distribution leads to a Gaussian law $(a, b, c, d) \leftrightarrow (\overline{E}, sd_E, \overline{v}, sd_v)$ to be identified

BOUNDARY CONDITIONS

IDENTIFYING THE MECHANICAL PROPERTIES

- Mean properties
 - identified from the macro stress assumption
 - $\overline{E} = 5.4$ GPa and $\overline{v} = 0.22$
- Heterogeneous properties

MISFIT FUNCTION

• Minimum of the misfit function

Standard deviation of the Young's modulus sd_E

FINAL DISCREPANCY

homogeneous (E,v) (before identification)

heterogeneous (E,v) (after identification)

- global reduction
- still some erroneous zones

INFLUENCE

 σ_{11} (Mpa)

Homogeneous (E,v)

OF THE HETEROGENEITIES

stress concentrations
 bone remodelling

HUMAN BONE SAMPLES

• Determining the local Young's modulus

Nanoindentation tests

Backscattered electron SEM image

Young's modulus in the FE mesh

SUMMARY

- DIC-based experiments
 - macro/micro strain values
- Highlighted correlations
 - effects of the microsctructure
- Identified mechanical parameters
 - Young's modulus and Poisson's ratio
 - crack step threshold strain

REMODELLING SIMULATION

[Devulder 2009]

REMODELLING SIMULATION

[Devulder 2009]

MICROEXTENSOMETRY MEASUREMENTS AND IDENTIFICATION OF MECHANICAL PROPERTIES ON CORTICAL BONE

<u>G. PUEL</u>*, L. HENRY^(*), A. DEVULDER*, D. AUBRY*, T. HOC*, L. SEDEL** *MSSMAT (ECOLE CENTRALE PARIS/CNRS UMR8579) **B2OA (UNIVERSITÉ PARIS 7/CNRS UMR7052)

