KU LEUVEN

MatchID Image Correlation & Material Identification

Integration of DIC into VFM: how do measurements contribute to identified material properties?

P. Lava, D. Debruyne and F. Pierron^{*} *University of Southampton

Celebrating 50 years of BSSM: Showcase on leading edge experimental techniques, 4th November 2014, London UK

Motivation

Full-Field measurements

• Grid

• • •

- Photoelasticity
- Interferometry
- Digital Image Correlation
- •

Measurement errors

Mechanical properties of materials

- Finite element updating
- Constitutive equation gap
- Equilibrium gap
- Reciprocrity gap
- Virtual Fields Method
 - ...

Identification errors

DIC is a complex and non-linear process

... results depend on many parameters:

- Correlation criterion
- Interpolation routines
- Shape functions
- Regularization parameters:
 - \circ Subset
 - Virtual strain gauge size
- Speckle pattern
- ...

Motivation

Full-Field measurements

• Grid

. . .

۰

- Photoelasticity
- Interferometry
- Digital Image Correlation

Measurement errors

- Finite element updating
- Constitutive equation gap
- Equilibrium gap
- Reciprocrity gap
- Virtual Fields Method

Identification errors

•••

Any realistic UQ on the mechanical parameters requires to take into account the measurement process

How?

- Confidence margins for the determined material parameters
- Optimization of test design (geometry of specimen, smoothing, ...)

Case study : unnotched losipescu test

Rossi M., Pierron F., International Journal of Solids and Structures, 2012.

- Glass/epoxy unidirectional composite
- Linear elastic orthotropic

Stress state is composition of compression, bending and shear

KU LEU

- Design variables:
 - Free length L
 - Fibre orientation α

Input data

Design Variables

- Free Length L: 10 -> 60 mm ; L =2mm
- Fibre orientation α : 0° -> 90° ; α += 10°

Camera characteristics

- spatial resolution: 1320 x 1024
- Dynamic range: 8-bit

Stiffness components

Stiffness		Maximum stress	
Q_{xx} (MPa)	40920	S_{+x} (MPa)	1000
Q_{yy} (MPa)	10230	S_{-x} (MPa)	-600
Q_{xy} (MPa)	3069	S_{+y} (MPa)	40
Q_{ss} (MPa)	4000	S_{-y} (MPa)	-100
		S_s (MPa)	40

FE generated displacement map + image of real speckle pattern

SPECKLE DEFORMATION

Synthetic image generation

Numerical deformation errors should be as low as possible: SUB-SAMPLING

Synthetic image generation: validation

P. Reu, *Experimental and numerical methods for exact subpixel shifting*, Experimental Mechanics 51 (2011) 443-452

Rossi M., Lava P., Pierron F., Debruyne D. and Sasso M. *Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM*, submitted to Strain (2014)

Noise ...

Intensity/color fluctuation around the "actual" image intensity/color.

KU LEUVEN

M. Grediac and F. Sur, "Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method," Strain, vol. 50, no. 1, pp. 1–27, 2014

Full-field measurement by DIC

Virtual Fields Method

Homogeneous linear elastic orthotropic materials

$$Q_{xx} \int_{S} \varepsilon_{x} \varepsilon_{x}^{*} dS + Q_{yy} \int_{S} \varepsilon_{y} \varepsilon_{y}^{*} dS + Q_{xy} \int_{S} \left(\varepsilon_{x} \varepsilon_{y}^{*} + \varepsilon_{y} \varepsilon_{x}^{*} \right) dS + Q_{ss} \int_{S} \varepsilon_{s} \varepsilon_{s}^{*} dS = \int_{\partial S} T_{x} u_{x}^{*} dl + \int_{\partial S} T_{y} u_{y}^{*} dl$$

comparison

The identification error is defined as

$$Err = \sqrt{\sum_{ij} w_{ij} \left(1 - \frac{Q_{ij}}{Q_{ij}^0}\right)^2}$$

with ij = [xx, yy, xy, ss]

 Q_{ij}^0 are the reference parameters introduced in the FE model Q_{ij} are the parameters identified with the VFM w_{ij} is a weighting parameter

Noise introduction (random): **several** simulated experiments are repeated

$$Err = \frac{1}{N_e} \sum_{k=1}^{N_e} Err_k$$

Optimization in view of TEST DESIGN

SS = 21 , VSG $\,$ = 201 are FIXED

(1360x1024 ; noise: 2 grey levels; 8-bit; 20 repetitions; $\Delta L = 2mm$; $\Delta \alpha = 10^{\circ}$)

Rossi M., Lava P., Pierron F., Debruyne D. and Sasso M. *Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM,* submitted to Strain (2014)

Results

Optimization in view of Regularization

• Shear strain maps obtained by image deformation plus different levels of smoothing

VSG=5 pixels (no smoothing)

VSG=60 pixels (local polynomial)

KUL

Which one is 'the best' ?

Results

L = 30 mm, α = 55° are FIXED: optimization in view of **DATA ANALYSIS**

Smoothing ... but not too much

Heterogeneities ... but not too much

Conclusions

- Simulator for material identification combining DIC and VFM
- Design specimen geometries which maximize performance of DIC and VFM
- Select the optimum regularization parameters (subset, VSG, ...) that minimize the error on the identified properties in function of your experimental setup (noise, lighting, ...)
- Provided realistic confidence margins for the identified stiffnesses
- Applied to any material model

Demo of direct integration of VFM and DIC

Glass/epoxy unidirectional composite

KU LEUVEN

- Linear elastic orthotropic
- Fibre orientation: 80 degrees
- Load: 3736N
- Thickness: 1mm
- Width = length = 20mm

Reference values:

Q11 = 41000MPa Q22 = 10300MPa Q12=3090MPa Q66=4000MPa

DIC course Metrology beyond colors January 12-16, 2015 - Ghent, Belgium

http://diccourse.matchid.org

