Advancements in X-ray diffraction residual stress measurements – Xstress DR45

R&D Manager Mikko Palosaari 2023-09-27

Measure for success

Stresstech

40 years of experience providing inspection instruments and measurement services

Barkhausen Noise

X-ray Diffraction

ESPI Hole-drilling

Stresstech Group

CUSTOMER VALUE STATEMENT

With Stresstech solutions, you can improve and control the quality of your manufacturing process where material properties can change during the machining or heat treatment processes.

Residual stress

Residual stresses are spontaneously in equilibrium as

- tensile residual stresses
 which are detrimental
- compressive residual stresses
 which are beneficial

Tensile and compressive stress formation on a bent sample

TENSILE

Residual stress determination with X-ray diffraction (XRD)

1D vs. 2D X-ray Detector

1D detector

- 1 × 256 pixel NMOS linear image sensor
- Efficiency to detect X-rays < 5 %
- Not designed for X-ray detection
- Small active area
- Wears from X-ray radiation

2D detector

- 256 × 256 pixel CMOS array detector
- Efficiency to detect X-rays > 95%
- Large active area
- No dark current

X-ray detection in XRD

X-rays coming through the collimator are diffracted from the sample as a **cone**

Diffraction from above

1D vs. 2D X-ray Detector

What the detector sees

1D detector

2D Area Detectors geometrics

• Additional degree of freedom in γ-direction

From 2D to 1D data

To use the standard $Sin^2\Psi$ method 1D data is needed

• Data collection time shortened at least two orders of magnitude

Application – 1D vs 2D technology

Small spot size

 Residual stress depth profiles were measured from small bearing balls

Depth profile measurement with 0.3 mm collimator, Cr tube, 5/5 tilts, 3 directions		
System	Exposure time	Total measurement time
Xstress G2R, 1D (Hamamatsu)	300 s	5 h 46 min
Xstress DR45, 2D (Advacam)	3 s	3 min 1 s

Continuous movement measurement

- Discrete tilt steps
- Move-stop-measure-repeat
- Number of tilt angles ≥ 9
- Exposure time per tilt angle \ge 1 s
- Total measurement time ≥ 30 s

- Continuous tilt movement
- Number of tilt angles ≥ 18
- Total measurement time ≥ 5 s
- "unnecessary" movements omitted

Continuous movement measurement

Measurement time can be shortened by a factor of 7 in the best case.

Continuous FWHM mapping with 2D detectors

- The width of the diffraction peak correlates to the hardness of the material
- No movement of the diffractometer is needed
- Sample moves, while diffractometer collects data

stresstec

- 2mm collimator, 100ms frame length, 2mm/speed.
- For typical "sorting" applications faster speeds can be used.

Hardness and FHWM

Correlation between FWHM and HRC

- Linear behavior above 30 HRC
- Loss of sensitivity at soft region

Continuous FWHM mapping

- Artificially burned bearing for BN sensor verification
- 7mm x 7mm scanning area
- Measurement time < 5 minutes
- 1600 datapoints: detailed information about the hardness distribution

Grain size information from the Debye-Scherrer ring

- The details of the Debye-Scherrer ring tell about the grain size or texture of the material
- "From how many grains are the photons diffracted from"?

Coarse grained material

Fine grained material

Grain size information from the Debye-Scherrer ring

- The number of "peaks" correlates to the grain size
- More peaks -> smaller grain size
- Needs calibration, but can be used to sort or identify different grain sized materials

Conclusions

Xstress DR45

- Short measurement cycle time required
- Sample material is not optimal for X-ray diffraction
- Measuring with small spot sizes (<1 mm collimator)
- Mapping of large areas
- Additional information about the sample microstructure

For more information visit www.stresstech.com

